Movatterモバイル変換


[0]ホーム

URL:


About:Evolution of olfaction

An Entity of Type:Thing,from Named Graph:http://dbpedia.org,within Data Space:dbpedia.org

Odor molecules are detected by the olfactory receptors (hereafter OR) in the olfactory epithelium of the nasal cavity. Each receptor type is expressed within a subset of neurons, from which they directly connect to the olfactory bulb in the brain. Olfaction is essential for survival in most vertebrates; however, the degree to which an animal depends on smell is highly varied. Great variation exists in the number of OR genes among vertebrate species, as shown through bioinformatic analyses. This diversity exists by virtue of the wide-ranging environments that they inhabit. For instance, dolphins that are secondarily adapted to an aquatic niche possess a considerably smaller subset of genes than most mammals. OR gene repertoires have also evolved in relation to other senses, as higher primat

PropertyValue
dbo:abstract
  • Odor molecules are detected by the olfactory receptors (hereafter OR) in the olfactory epithelium of the nasal cavity. Each receptor type is expressed within a subset of neurons, from which they directly connect to the olfactory bulb in the brain. Olfaction is essential for survival in most vertebrates; however, the degree to which an animal depends on smell is highly varied. Great variation exists in the number of OR genes among vertebrate species, as shown through bioinformatic analyses. This diversity exists by virtue of the wide-ranging environments that they inhabit. For instance, dolphins that are secondarily adapted to an aquatic niche possess a considerably smaller subset of genes than most mammals. OR gene repertoires have also evolved in relation to other senses, as higher primates with well-developed vision systems tend to have a smaller number of OR genes. As such, investigating the evolutionary changes of OR genes can provide useful information on how genomes respond to environmental changes. Differences in smell sensitivity are also dependent on the anatomy of the olfactory apparatus, such as the size of the olfactory bulb and epithelium. Nonetheless, the general features of the olfactory system are highly conserved among vertebrates, and, similarly to other sensory systems, olfaction has undergone fairly modest changes throughout the evolution of vertebrates. Phylogenetic analyses reveal that at least three distinct olfactory subsystems are broadly consistent in vertebrates, and a fourth accessory system (vomeronasal) solely arose in tetrapods. (en)
dbo:wikiPageID
  • 46405867 (xsd:integer)
dbo:wikiPageLength
  • 43648 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1115566645 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Odor molecules are detected by the olfactory receptors (hereafter OR) in the olfactory epithelium of the nasal cavity. Each receptor type is expressed within a subset of neurons, from which they directly connect to the olfactory bulb in the brain. Olfaction is essential for survival in most vertebrates; however, the degree to which an animal depends on smell is highly varied. Great variation exists in the number of OR genes among vertebrate species, as shown through bioinformatic analyses. This diversity exists by virtue of the wide-ranging environments that they inhabit. For instance, dolphins that are secondarily adapted to an aquatic niche possess a considerably smaller subset of genes than most mammals. OR gene repertoires have also evolved in relation to other senses, as higher primat (en)
rdfs:label
  • Evolution of olfaction (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
isdbo:wikiPageRedirects of
isdbo:wikiPageWikiLink of
isfoaf:primaryTopic of
Powered by OpenLink Virtuoso   This material is Open Knowledge    W3C Semantic Web Technology    This material is Open Knowledge   Valid XHTML + RDFa
This content was extracted fromWikipedia and is licensed under theCreative Commons Attribution-ShareAlike 3.0 Unported License

[8]ページ先頭

©2009-2025 Movatter.jp