Movatterモバイル変換


[0]ホーム

URL:


About:Convex embedding

An Entity of Type:Thing,from Named Graph:http://dbpedia.org,within Data Space:dbpedia.org

In geometric graph theory, a convex embedding of a graph is an embedding of the graph into a Euclidean space, with its vertices represented as points and its edges as line segments, so that all of the vertices outside a specified subset belong to the convex hull of their neighbors. More precisely, if is a subset of the vertices of the graph, then a convex -embedding embeds the graph in such a way that every vertex either belongs to or is placed within the convex hull of its neighbors. A convex embedding into -dimensional Euclidean space is said to be in general position if every subset of its vertices spans a subspace of dimension .

PropertyValue
dbo:abstract
  • In geometric graph theory, a convex embedding of a graph is an embedding of the graph into a Euclidean space, with its vertices represented as points and its edges as line segments, so that all of the vertices outside a specified subset belong to the convex hull of their neighbors. More precisely, if is a subset of the vertices of the graph, then a convex -embedding embeds the graph in such a way that every vertex either belongs to or is placed within the convex hull of its neighbors. A convex embedding into -dimensional Euclidean space is said to be in general position if every subset of its vertices spans a subspace of dimension . Convex embeddings were introduced by W. T. Tutte in 1963. Tutte showed that if the outer face of a planar graph is fixed to the shape of a given convex polygon in the plane, and the remaining vertices are placed by solving a system of linear equations describing the behavior of ideal springs on the edges of the graph, then the result will be a convex -embedding. More strongly, every face of an embedding constructed in this way will be a convex polygon, resulting in a convex drawing of the graph. Beyond planarity, convex embeddings gained interest from a 1988 result of Nati Linial, László Lovász, and Avi Wigderson that a graph is k-vertex-connected if and only if it has a -dimensional convex -embedding in general position, for some of of its vertices, and that if it is k-vertex-connected then such an embedding can be constructed in polynomial time by choosing to be any subset of vertices, and solving Tutte's system of linear equations. One-dimensional convex embeddings (in general position), for a specified set of two vertices, are equivalent to bipolar orientations of the given graph. (en)
dbo:wikiPageID
  • 64656081 (xsd:integer)
dbo:wikiPageLength
  • 2891 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 969713936 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In geometric graph theory, a convex embedding of a graph is an embedding of the graph into a Euclidean space, with its vertices represented as points and its edges as line segments, so that all of the vertices outside a specified subset belong to the convex hull of their neighbors. More precisely, if is a subset of the vertices of the graph, then a convex -embedding embeds the graph in such a way that every vertex either belongs to or is placed within the convex hull of its neighbors. A convex embedding into -dimensional Euclidean space is said to be in general position if every subset of its vertices spans a subspace of dimension . (en)
rdfs:label
  • Convex embedding (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
isdbo:wikiPageWikiLink of
isfoaf:primaryTopic of
Powered by OpenLink Virtuoso   This material is Open Knowledge    W3C Semantic Web Technology    This material is Open Knowledge   Valid XHTML + RDFa
This content was extracted fromWikipedia and is licensed under theCreative Commons Attribution-ShareAlike 3.0 Unported License

[8]ページ先頭

©2009-2025 Movatter.jp