contsurvplot: Visualize the Effect of a Continuous Variable on a Time-to-EventOutcome
Graphically display the (causal) effect of a continuous variable on a time-to-event outcomeusing multiple different types of plots based on g-computation. Those functionsinclude, among others, survival area plots, survival contour plots, survival quantile plots and3D surface plots. Due to the use of g-computation, all plot allow confounder-adjustment naturally.For details, see Robin Denz, Nina Timmesfeld (2023) <doi:10.1097/EDE.0000000000001630>.
| Version: | 0.2.2 |
| Imports: | ggplot2 (≥ 3.4.0),dplyr,rlang,riskRegression,foreach |
| Suggests: | survival,pammtools,gganimate,transformr,plotly,reshape2,doParallel,knitr,rmarkdown,testthat (≥ 3.0.0),vdiffr (≥1.0.0),covr |
| Published: | 2025-07-24 |
| DOI: | 10.32614/CRAN.package.contsurvplot |
| Author: | Robin Denz [aut, cre] |
| Maintainer: | Robin Denz <robin.denz at rub.de> |
| Contact: | <robin.denz@rub.de> |
| BugReports: | https://github.com/RobinDenz1/contsurvplot/issues |
| License: | GPL (≥ 3) |
| URL: | https://github.com/RobinDenz1/contsurvplot,https://robindenz1.github.io/contsurvplot/ |
| NeedsCompilation: | no |
| Citation: | contsurvplot citation info |
| Materials: | README,NEWS |
| CRAN checks: | contsurvplot results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=contsurvplotto link to this page.