Movatterモバイル変換


[0]ホーム

URL:


predieval: Assessing Performance of Prediction Models for PredictingPatient-Level Treatment Benefit

Methods for assessing the performance of a prediction model with respect to identifying patient-level treatment benefit. All methods are applicable for continuous and binary outcomes, and for any type of statistical or machine-learning prediction model as long as it uses baseline covariates to predict outcomes under treatment and control.

Version:0.1.1
Depends:R (≥ 4.1)
Imports:stats,Hmisc (≥ 4.6-0),ggplot2 (≥ 3.3.5),MASS (≥ 7.3),Matching (≥ 4.10-2)
Suggests:testthat (≥ 3.0.0)
Published:2022-04-19
DOI:10.32614/CRAN.package.predieval
Author:Orestis Efthimiou
Maintainer:Orestis Efthimiou <oremiou at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://github.com/esm-ispm-unibe-ch/predieval
NeedsCompilation:no
Materials:NEWS
CRAN checks:predieval results

Documentation:

Reference manual:predieval.html ,predieval.pdf

Downloads:

Package source: predieval_0.1.1.tar.gz
Windows binaries: r-devel:predieval_0.1.1.zip, r-release:predieval_0.1.1.zip, r-oldrel:predieval_0.1.1.zip
macOS binaries: r-release (arm64):predieval_0.1.1.tgz, r-oldrel (arm64):predieval_0.1.1.tgz, r-release (x86_64):predieval_0.1.1.tgz, r-oldrel (x86_64):predieval_0.1.1.tgz
Old sources: predieval archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=predievalto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp