Movatterモバイル変換


[0]ホーム

URL:


RcppDPR: 'Rcpp' Implementation of Dirichlet Process Regression

'Rcpp' reimplementation of the the Bayesian non-parametric Dirichlet Process Regression model for penalized regression first published in Zeng and Zhou (2017) <doi:10.1038/s41467-017-00470-2>. A full Bayesian version is implemented with Gibbs sampling, as well as a faster but less accurate variational Bayes approximation.

Version:0.1.10
Imports:Rcpp (≥ 1.0.13)
LinkingTo:Rcpp,RcppArmadillo,RcppGSL
Suggests:testthat (≥ 3.0.0),snpStats
Published:2025-03-19
DOI:10.32614/CRAN.package.RcppDPR
Author:Mohammad Abu Gazala [cre, aut], Daniel Nachun [ctb], Ping Zeng [ctb]
Maintainer:Mohammad Abu Gazala <abugazalamohammad at gmail.com>
License:GPL-3
NeedsCompilation:yes
Materials:NEWS
CRAN checks:RcppDPR results

Documentation:

Reference manual:RcppDPR.html ,RcppDPR.pdf

Downloads:

Package source: RcppDPR_0.1.10.tar.gz
Windows binaries: r-devel:RcppDPR_0.1.10.zip, r-release:RcppDPR_0.1.10.zip, r-oldrel:RcppDPR_0.1.10.zip
macOS binaries: r-release (arm64):RcppDPR_0.1.10.tgz, r-oldrel (arm64):RcppDPR_0.1.10.tgz, r-release (x86_64):RcppDPR_0.1.10.tgz, r-oldrel (x86_64):RcppDPR_0.1.10.tgz
Old sources: RcppDPR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=RcppDPRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp