One or several persons start to show symptoms of COVID-19. When didthe person become infected?
get_infection_density for one personThe functionget_infection_density() can be used tocalculate a data frame containing the infection probability when theperson shows symptoms.
The functionget_infection_density() expects thefollowing input arguments:
First, thesymptom_begin_date is needed, which defineswhen the person started to have symptoms.
Then, themax_incubation_days has to be set, whichdefines the interval length of the distribution output.
The remaining inputsmeanlog andsdlog arethe parameters of the log-normal distribution for the infectionprobability.
symptom_begin_date<-as.Date("2021-12-28")max_incubation_days<-18meanlog<-1.69sdlog<-0.55infec_date_df<-get_infection_density(symptom_begin_date, max_incubation_days, meanlog, sdlog)The default values of log-normal distribution are taken from thepaper Xin et al [1]. In this paper the authors made a systematic reviewof the current literature and estimated those parameters based on theirmeta-analysis.
The data frame shows for each hour from the earliest potential startof infection up to the symptom begin date the resulting density of thelog-normal distribution. This density can be used for calculating themost probable period of the infection.
| dates | distribution | |
|---|---|---|
| 100 | 2021-12-14 04:00:00 | 0.0122820 |
| 101 | 2021-12-14 05:00:00 | 0.0124346 |
| 102 | 2021-12-14 06:00:00 | 0.0125891 |
| 103 | 2021-12-14 07:00:00 | 0.0127457 |
| 104 | 2021-12-14 08:00:00 | 0.0129043 |
| 105 | 2021-12-14 09:00:00 | 0.0130650 |
| 106 | 2021-12-14 10:00:00 | 0.0132277 |
| 107 | 2021-12-14 11:00:00 | 0.0133926 |
| 108 | 2021-12-14 12:00:00 | 0.0135597 |
| 109 | 2021-12-14 13:00:00 | 0.0137289 |
get_misc_infection_density for several personsThe functionget_misc_infection_density() creates a dataframe containing the mixture probability of all considered persons. Itcan be used to give an overview of the infection probability of severalpersons with symptom onset dates, e.g., one person with symptom onset on24.12.2021 and two persons with symptom onset on 28.12.2021.
The following arguments are needed for using the functionget_misc_infection_density():
The first parametersymptom_begin_dates contains thedates when the persons got symptoms.
The second parameterpersons contains the number ofpersons having symptoms on each date.
The remaining inputs are the same as inget_infection_density.
symptom_begin_dates<-c(as.Date("2021-12-24"),as.Date("2021-12-28"))persons<-c(1,2)max_incubation_days<-18misc_infec_date_df<-get_misc_infection_density(symptom_begin_dates, persons, max_incubation_days)This function uses theget_infection_density functionand generates a mixture distribution [2]. This probability distributionis obtained by a sum of the infection probability distribution for eachsymptom onset day multiplied by the percentage of persons, which havestarted to show symptoms on this day.
The data shows the mixture log-normal distribution and thus gives anoverview of the potential infection time points for all consideredpersons. However, it does not necessarily have to imply that they hadtheir infection on the same time point. In fact, there did not have tobe an event, where the persons met. It shows when the persons gotinfected and it is possible that there is more than one infection date,which can be seen based on several maxima.
| dates | distribution | |
|---|---|---|
| 100 | 2021-12-10 04:00:00 | 0.0066933 |
| 101 | 2021-12-10 05:00:00 | 0.0067743 |
| 102 | 2021-12-10 06:00:00 | 0.0068564 |
| 103 | 2021-12-10 07:00:00 | 0.0069395 |
| 104 | 2021-12-10 08:00:00 | 0.0070237 |
| 105 | 2021-12-10 09:00:00 | 0.0071090 |
| 106 | 2021-12-10 10:00:00 | 0.0071953 |
| 107 | 2021-12-10 11:00:00 | 0.0072828 |
| 108 | 2021-12-10 12:00:00 | 0.0073713 |
| 109 | 2021-12-10 13:00:00 | 0.0074610 |
get_infection_density.calculate_qstart_qend<-function(probability, df) { hdr_df<-hdr(den =data.frame(x =1:length(df$distribution),y = df$distribution),p = probability*100)$hdr qstart<- (hdr_df[1:(length(hdr_df)/2)*2]-1)/24 qend<- (hdr_df[1:(length(hdr_df)/2)*2-1]-1)/24return(list("qstart"= qstart,"qend"= qend))}.shade_curve<-function(df, qstart, qend,fill ="red",alpha =0.4) { subset_df<- df[floor(qstart*24):ceiling(qend*24), ]geom_area(data = subset_df,aes(x = x,y = y),fill = fill,color =NA,alpha = alpha)} symptom_begin_date<-as.Date("2021-12-28") df<- infec_date_df period_80<-.calculate_qstart_qend(0.8, df) period_95<-.calculate_qstart_qend(0.95, df) symp_date_posixct_start<-as.POSIXct(format(as.POSIXct(symptom_begin_date,tz ="CET"),"%Y-%m-%d")) symp_date_posixct_end<-as.POSIXct(format(as.POSIXct(symptom_begin_date+1,tz ="CET"),"%Y-%m-%d")) symp_date_posixct_mid<- symp_date_posixct_start-as.numeric(difftime(symp_date_posixct_start, symp_date_posixct_end,units ="hours"))/2*3600 g<-ggplot()+scale_x_datetime(breaks = scales::date_breaks("1 days"),labels = scales::date_format("%d %b"))+theme(axis.text.x =element_text(angle =90))+# scale_x_continuous(breaks = x_tick,# labels = x_label) +# theme(axis.ticks.x = element_line(color = c(rbind(rep("black", length(x_label) / 2), rep(NA, length(x_label) / 2))), linetype = 2, size = 1))+geom_path(aes(x = df$dates,y = df$distribution,color ="red"))+.shade_curve(df =data.frame(x = df$dates,y = df$distribution), period_80$qstart, period_80$qend)+.shade_curve(df =data.frame(x = df$dates,y = df$distribution), period_95$qstart, period_95$qend,alpha =0.2)+geom_rect(data =data.frame(xmin = symp_date_posixct_start,xmax = symp_date_posixct_end,ymin =-Inf,ymax =Inf),aes(xmin = xmin,xmax = xmax,ymin = ymin,ymax = ymax),fill ="brown",alpha =0.3)+geom_label(aes(x = symp_date_posixct_mid,y =0.9*max(df$distribution),label ="symptom\nonset"),colour ="brown",fill ="white",size =5,label.size =NA)+ylab("probability")+xlab("timeline")+labs(color ='Verteilung')+# ggtitle("Visualization of get_infection_density ") +theme(legend.position ="none",text =element_text(size =16*5/5))+theme(axis.text.x =element_text(colour ="black",face ="bold",angle =30,hjust =1))+theme(axis.title.x =element_text(colour ="black",face ="bold"))+theme(axis.text.y =element_text(colour ="gray50"))+theme(axis.title.y =element_text(colour ="gray50")) gget_misc_infection_density df<- misc_infec_date_df period_80<-.calculate_qstart_qend(0.8, df) period_95<-.calculate_qstart_qend(0.95, df) symp_date_posixct_start<-as.POSIXct(format(as.POSIXct(symptom_begin_date,tz ="CET"),"%Y-%m-%d")) symp_date_posixct_end<-as.POSIXct(format(as.POSIXct(symptom_begin_date+1,tz ="CET"),"%Y-%m-%d")) symp_date_posixct_mid<- symp_date_posixct_start-as.numeric(difftime(symp_date_posixct_start, symp_date_posixct_end,units ="hours"))/2*3600 g<-ggplot()+scale_x_datetime(breaks = scales::date_breaks("1 days"),labels = scales::date_format("%d %b"))+theme(axis.text.x =element_text(angle =90))+# scale_x_continuous(breaks = x_tick,# labels = x_label) +# theme(axis.ticks.x = element_line(color = c(rbind(rep("black", length(x_label) / 2), rep(NA, length(x_label) / 2))), linetype = 2, size = 1))+geom_path(aes(x = df$dates,y = df$distribution,color ="red"))+.shade_curve(df =data.frame(x = df$dates,y = df$distribution), period_80$qstart, period_80$qend)+.shade_curve(df =data.frame(x = df$dates,y = df$distribution), period_95$qstart, period_95$qend,alpha =0.2)+ylab("probability")+xlab("timeline")+labs(color ='Verteilung')+# ggtitle("Visualization of get_infection_density") +theme(legend.position ="none",text =element_text(size =16*5/5))+theme(axis.text.x =element_text(colour ="black",face ="bold",angle =30,hjust =1))+theme(axis.title.x =element_text(colour ="black",face ="bold"))+theme(axis.text.y =element_text(colour ="gray50"))+theme(axis.title.y =element_text(colour ="gray50")) g[1] Xin H, Wong JY, Murphy C, Yeung A, Taslim Ali S, Wu P, CowlingBJ. The Incubation Period Distribution of Coronavirus Disease 2019: ASystematic Review and Meta-Analysis. Clinical Infectious Diseases, 2021;73(12): 2344-2352.