Movatterモバイル変換


[0]ホーム

URL:


RBF: Robust Backfitting

A robust backfitting algorithm for additive models based on (robust) local polynomial kernel smoothers. It includes both bounded and re-descending (kernel) M-estimators, and it computes predictions for points outside the training set if desired. See Boente, Martinez and Salibian-Barrera (2017) <doi:10.1080/10485252.2017.1369077> and Martinez and Salibian-Barrera (2021) <doi:10.21105/joss.02992> for details.

Version:2.1.1
Imports:stats, graphics
Suggests:knitr,rmarkdown,gam,RobStatTM,MASS
Published:2023-08-31
DOI:10.32614/CRAN.package.RBF
Author:Matias Salibian-Barrera [aut, cre], Alejandra Martinez [aut]
Maintainer:Matias Salibian-Barrera <matias at stat.ubc.ca>
License:GPL (≥ 3.0)
NeedsCompilation:yes
Materials:NEWS
CRAN checks:RBF results

Documentation:

Reference manual:RBF.html ,RBF.pdf
Vignettes:Examples (source,R code)

Downloads:

Package source: RBF_2.1.1.tar.gz
Windows binaries: r-devel:RBF_2.1.1.zip, r-release:RBF_2.1.1.zip, r-oldrel:RBF_2.1.1.zip
macOS binaries: r-release (arm64):RBF_2.1.1.tgz, r-oldrel (arm64):RBF_2.1.1.tgz, r-release (x86_64):RBF_2.1.1.tgz, r-oldrel (x86_64):RBF_2.1.1.tgz
Old sources: RBF archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=RBFto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp