The aim is to develop an R package, which is new.dist package, forthe probability (density) function, the distribution function, thequantile function and the associated random number generation functionfor discrete and continuous distributions, which have recently beenproposed in the literature. This package implements the followingdistributions: The Power Muth Distribution, A bimodal WeibullDistribution, The Discrete Lindley Distribution 1, The Discrete LindleyDistribution 2, The Gamma-Lomax Distribution, Weighted GeometricDistribution, A Power Log-Dagum Distribution, Kumaraswamy Distribution,Lindley Distribution, Ram Awadh Distribution, The Unit-Inverse GaussianDistribution, EP Distribution, Akash Distribution, Ishita Distribution,Maxwell Distribution, The Standard Omega Distribution, SlashedGeneralized Rayleigh Distribution, Two-Parameter Rayleigh Distribution,Muth Distribution, Uniform-Geometric Distribution, Discrete WeibullDistribution.
You can install the development version of new.dist from [GitHub][https://github.com/]with:
# install.packages("devtools")devtools::install_github("akmn35/new.dist")new.dist Density, distribution function, quantilefunction and random generation for parameter estimation ofdistributions.
dbwd Density function for Bimodal Weibull distributionwith shape (alpha) and scale (beta) parameters.
library(new.dist)dbwd(1,alpha=2,beta=3,sigma=4)#> [1] 0.01594262pbwd Distribution function for Bimodal Weibulldistribution with shape (alpha) and scale (beta) parameters.
library(new.dist)pbwd(1,alpha=2,beta=3,sigma=4)#> [1] 0.003859685qbwd Quantile function for Bimodal Weibull distributionwith shape (alpha) and scale (beta) parameters.
library(new.dist)qbwd(.7,alpha=2,beta=3,sigma=4)#> [1] 4.759942rbwd Random generation for a Bimodal Weibulldistribution with shape (alpha) and scale (beta) parameters.
library(new.dist)rbwd(5,alpha=2,beta=3,sigma=4)#> [1] 5.787403 3.062926 2.560047 3.406179 2.344262dsgrd Density function for a Slashed GeneralizedRayleigh distribution with shape (alpha), scale (theta) andkurtosis(beta) parameters.
library(new.dist)dsgrd(2,theta=3,alpha=1,beta=4)#> [1] 0.08314235psgrd Distribution function for a Slashed GeneralizedRayleigh distribution with shape (alpha), scale (theta) and kurtosis(beta) parameters.
library(new.dist)psgrd(5,theta=3,alpha=1,beta=4)#> [1] 0.9989333qsgrd Quantile function for a Slashed GeneralizedRayleigh distribution with shape (alpha), scale (theta) and kurtosis(beta) parameters.
library(new.dist)qsgrd(.4,theta=3,alpha=1,beta=4)#> [1] 0.8358487rsgrd Random generation for a Slashed GeneralizedRayleigh distribution with shape (alpha), scale (theta) and kurtosis(beta) parameters.
library(new.dist)rsgrd(5,theta=3,alpha=1,beta=4)#> [1] 0.9162424 2.2939520 0.9160551 0.7168782 1.2676308dsod Density function for a the Standard Omegadistribution with alpha and beta parameters.
library(new.dist)dsod(0.4,alpha=1,beta=2)#> [1] 0.6986559psod Distribution function for a the Standard Omegadistribution with alpha and beta parameters.
library(new.dist)psod(0.4,alpha=1,beta=2)#> [1] 0.1490371qsod Quantile function for a the Standard Omegadistribution with alpha and beta parameters.
library(new.dist)qsod(.8,alpha=1,beta=2)#> [1] 0.9607689rsod Random generation for a the Standard Omegadistribution with alpha and beta parameters.
library(new.dist)rsod(5,alpha=1,beta=2)#> [1] 0.9626043 0.6029560 0.8908171 0.9719128 0.6324489dugd Density function for the Uniform-Geometricdistribution with theta parameter.
library(new.dist)dugd(1,theta=0.5)#> [1] 0.6931472pugd Distribution function for the Uniform-Geometricdistribution with theta parameter.
library(new.dist)pugd(1,theta=.5)#> [1] 0.6931472qugd Quantile function for the Uniform-Geometricdistribution with theta parameter.
library(new.dist)qugd(0.6,theta=.1)#> [1] 4rugd Random generation for the Uniform-Geometricdistribution with theta parameter.
library(new.dist)rugd(5,theta=.1)#> [1] 1 13 13 5 9dtpmd Density function for the Power Muth distributionwith shape (beta) and scale (alpha) parameters.
library(new.dist)dtpmd(1,beta=2,alpha=3)#> [1] 0.04952547ptpmd Distribution function for the Power Muthdistribution shape (beta) and scale (alpha) parameters.
library(new.dist)ptpmd(1,beta=2,alpha=3)#> [1] 0.008115344qtpmd Quantile function for the Power Muth distributionwith shape (beta) and scale (alpha) parameters.
library(new.dist)qtpmd(.5,beta=2,alpha=3)#> [1] 1.990084rtpmd Random generation for the Power Muth distributionwith shape (beta) and scale (alpha) parameters.
library(new.dist)rtpmd(5,beta=2,alpha=3)#> [1] 1.806067 1.668991 1.865928 1.775550 1.721437dtprd Density function for the Two-Parameter Rayleighdistribution with location (mu) and scale (lambda) parameters.
library(new.dist)dtprd(5,lambda=4,mu=4)#> [1] 0.1465251ptprd Distribution function for Two-Parameter Rayleighdistribution with location (mu) and scale (lambda) parameters.
library(new.dist)ptprd(2,lambda=2,mu=1)#> [1] 0.8646647qtprd Quantile function for Two-Parameter Rayleighdistribution with location (mu) and scale (lambda) parameters.
library(new.dist)qtprd(.5,lambda=2,mu=1)#> [1] 1.588705rtprd Random generation for Two-Parameter Rayleighdistribution with location (mu) and scale (lambda) parameters.
library(new.dist)rtprd(5,lambda=2,mu=1)#> [1] 2.137743 1.385888 1.788912 1.696368 1.783938duigd Density function for the Unit Inverse Gaussiandistribution with mean (mu) and scale (lambda) parameters.
library(new.dist)duigd(1,mu=2,lambda=3)#> [1] 0.4749088puigd Distribution function for the Unit InverseGaussian distribution with mean (mu) and scale (lambda) parameters.
library(new.dist)puigd(1,mu=2,lambda=3)#> [1] 0.2873867quigd Quantile function for the Unit Inverse Gaussiandistribution with mean (mu) and scale (lambda) parameters.
library(new.dist)quigd(.1,mu=2,lambda=3)#> [1] 0.6104128ruigd Random generation for the Unit Inverse Gaussiandistribution with mean (mu) and scale (lambda) parameters.
library(new.dist)ruigd(5,mu=2,lambda=3)#> [1] 1.7037855 2.8067345 0.8597714 0.7931621 1.0315418dwgd Density function for the Weighted Geometricdistribution with alpha and lambda parameters.
library(new.dist)dwgd(1,alpha=.2,lambda=3)#> [1] 0.79872pwgd Distribution function for the Weighted Geometricdistribution with alpha and lambda parameters.
library(new.dist)dwgd(1,alpha=.2,lambda=3)#> [1] 0.79872qwgd Quantile function for the Weighted Geometricdistribution with alpha and lambda parameters.
library(new.dist)qwgd(.98,alpha=.2,lambda=3)#> [1] 3rwgd Random generation for the Weighted Geometricdistribution with alpha and lambda parameters.
library(new.dist)rwgd(5,alpha=.2,lambda=3)#> [1] 1 1 3 1 2ddLd1 Density function for the Discrete Lindleydistribution 1 with theta parameter.
library(new.dist)ddLd1(1,theta=2)#> [1] 0.1828223pdLd1 Distribution function for the Discrete Lindleydistribution 1 with theta parameter.
library(new.dist)ddLd1(1,theta=2)#> [1] 0.1828223qdLd1 Quantile function for the Discrete Lindleydistribution 1 with theta parameter.
library(new.dist)qdLd1(.993,theta=2)#> [1] 3rdLd1 Random generation for the Discrete Lindleydistribution 1 with theta parameter.
library(new.dist)rdLd1(5,theta=1)#> [1] 0 2 0 2 0dmd Density function for Maxwell distribution with scale(theta) parameter.
library(new.dist)dmd(1,theta=2)#> [1] 0.4839414pmd Distribution function for a Maxwell distributionwith scale (theta) parameter.
library(new.dist)pmd(1,theta=2)#> [1] 0.198748qmd Quantile function for a Maxwell distribution withscale (theta) parameter.
library(new.dist)qmd(.4,theta=5)#> [1] 2.161694rmd Random generation for a Maxwell distribution withscale (theta) parameter.
library(new.dist)rmd(5,theta=1)#> [1] 0.9270855 2.2550202 1.2018527 0.9012689 1.6375431dkd Density function for Kumaraswamy distribution withshape (alpha, lambda) parameters.
library(new.dist)dkd(0.1,lambda=2,alpha=3)#> [1] 0.58806pkd Distribution function for Kumaraswamy distributionwith shape (alpha, lambda) parameters.
library(new.dist)dkd(0.1,lambda=2,alpha=3)#> [1] 0.58806qkd Quantile function for Kumaraswamy distribution withshape (alpha, lambda) parameters.
library(new.dist)pkd(0.5,lambda=2,alpha=3)#> [1] 0.578125rkd Random generation for Kumaraswamy distribution withshape (alpha, lambda) parameters.
library(new.dist)rkd(5,lambda=2,alpha=3)#> [1] 0.6415521 0.5272059 0.2329670 0.4351743 0.5657495dgld Density function for the Gamma-Lomax distributionwith shape (a, alpha) and scale (beta) parameters.
library(new.dist)dgld(1,a=2,alpha=3,beta=4)#> [1] 0.2056491pgld Distribution function for the Gamma-Lomaxdistribution with shape (a, alpha) and scale (beta) parameters.
library(new.dist)dgld(1,a=2,alpha=3,beta=4)#> [1] 0.2056491qgld Quantile function for the Gamma-Lomax distributionwith shape (a, alpha) and scale (beta) parameters.
library(new.dist)qgld(.8,a=2,alpha=3,beta=4)#> [1] 6.852518rgld Random generation for the Gamma-Lomax distributionwith shape (a, alpha) and scale (beta) parameters.
library(new.dist)rgld(5,a=2,alpha=3,beta=4)#> [1] 2.8217781 5.5886484 8.4958716 0.9864014 2.1699043ddLd2 Density function for a Discrete Lindleydistribution 2 with theta parameter.
library(new.dist)ddLd2(2,theta=2)#> [1] 0.03530023pdLd2 Distribution function for a Discrete Lindleydistribution 2 with theta parameter.
library(new.dist)pdLd2(1,theta=2)#> [1] 0.9572635qdLd2 Quantile function for a Discrete Lindleydistribution 2 with theta parameter.
library(new.dist)qdLd2(.5,theta=2)#> [1] 0rdLd2 Random generation for a Discrete Lindleydistribution 2 with theta parameter.
library(new.dist)rdLd2(5,theta=1)#> [1] 3 0 1 0 0dEPd Density function for the EP distribution withlambda and beta parameters.
library(new.dist)dEPd(1,lambda=2,beta=3)#> [1] 0.05165063pEPd Distribution function for the EP distribution withlambda and beta parameters.
library(new.dist)pEPd(1,lambda=2,beta=3)#> [1] 0.9836125qEPd Quantile function for the EP distribution withlambda and beta parameters.
library(new.dist)qEPd(.8,lambda=2,beta=3)#> [1] 0.295895rEPd Random generation for the EP distribution withlambda and beta parameters.
library(new.dist)rEPd(5,lambda=2,beta=3)#> [1] 0.08754699 0.01152708 0.27621565 0.12618652 0.18547342dRA Density function for a Ram Awadh distribution withscale (theta) parameter.
library(new.dist)dRA(1,theta=2)#> [1] 0.1412194pRA Distribution function for a Ram Awadh distributionwith scale (theta) parameter.
library(new.dist)pRA(1,theta=2)#> [1] 0.3115553qRA Quantile function for a Ram Awadh distribution withscale (theta) parameter.
library(new.dist)dRA(.8,theta=2)#> [1] 0.163461rRA Random generation for a Ram Awadh distribution withscale (theta) parameter.
library(new.dist)rRA(5,theta=2)#> [1] 0.9774141 2.8355960 1.9192415 4.0137512 2.5296763domd Density function for the Muth distribution withalpha parameter.
library(new.dist)domd(1,alpha=.2)#> [1] 0.4123689pomd Distribution function for the Muth distributionwith alpha parameter.
library(new.dist)pomd(1,alpha=.2)#> [1] 0.596272qomd Quantile function for the Muth distribution withalpha parameter.
library(new.dist)qomd(.8,alpha=.2)#> [1] 1.637047romd Random generation for the Muth distribution withalpha parameter.
library(new.dist)romd(5,alpha=.2)#> [1] 2.291542 1.144422 1.345481 2.172140 1.377844dpldd Density function for a Power Log Dagumdistribution with alpha, beta and theta parameters.
library(new.dist)dpldd(1,alpha=2,beta=3,theta=4)#> [1] 0.1766842ppldd Distribution function for a Power Log Dagumdistribution with alpha, beta and theta parameters.
library(new.dist)ppldd(1,alpha=2,beta=3,theta=4)#> [1] 0.9742603qpldd Quantile function for a Power Log Dagumdistribution with alpha, beta and theta parameters.
library(new.dist)qpldd(.8,alpha=2,beta=3,theta=4)#> [1] 0.6109249rpldd Random generation for a Power Log Dagumdistribution with alpha, beta and theta parameters.
library(new.dist)rpldd(5,alpha=2,beta=3,theta=4)#> [1] 0.05775973 -0.28725832 0.53623427 0.64797737 0.01620600dLd Density function for Lindley distribution with thetaparameter.
library(new.dist)dLd(1,theta=2)#> [1] 0.3608941pLd Distribution function for Lindley distribution withtheta parameter.
library(new.dist)pLd(1,theta=2)#> [1] 0.7744412qLd Quantile function for Lindley distribution withtheta parameter.
library(new.dist)qLd(.5,theta=2)#> [1] 0.4872058rLd Random generation for Lindley distribution withtheta parameter.
library(new.dist)rLd(5,theta=1)#> [1] 0.3935864 1.7494001 0.2860219 1.1050805 1.8812775Department of Statistics, Faculty of Science, Selcuk University,42250, Konya, Turkey
Email:coskun@selcuk.edu.tr
Akdoğan, Y., Kuş, C., Asgharzadeh, A., Kınacı, İ., & Sharafi, F.(2016).Uniform-geometric distribution. Journal of StatisticalComputation and Simulation, 86(9), 1754-1770.
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018,Inferences onstress–strength reliability based on ranked set sampling data in case ofLindley distribution, Journal of statistical computation andsimulation, 88 (15), 3018-3032.
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019,Apower log-Dagum distribution: estimation and applications, Journalof Applied Statistics, 46 (5), 874-892.
Bakouch, H. S., Jazi, M. A. ve Nadarajah, S., 2014,A newdiscrete distribution, Statistics, 48 (1), 200-240.
Birbiçer, İ. ve Genç, A. İ., 2022,On parameter estimation of thestandard omega distribution. Journal of Applied Statistics,1-17.
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015,Thegamma-Lomax distribution, Journal of statistical computation andsimulation, 85 (2), 305-319.
Dey, S., Dey, T. ve Kundu, D., 2014,Two-parameter Rayleighdistribution: different methods of estimation, American Journal ofMathematical and Management Sciences, 33 (1), 55-74.
Ghitany, M., Mazucheli, J., Menezes, A. ve Alqallaf, F., 2019,The unit-inverse Gaussian distribution: A new alternative totwo-parameter distributions on the unit interval, Communications inStatistics-Theory and Methods, 48 (14), 3423-3438.
Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011,The discrete Lindleydistribution: properties and applications.Journal of statisticalcomputation and simulation, 81 (11), 1405-1416.
Iriarte, Y. A., Vilca, F., Varela, H. ve Gómez, H. W., 2017,Slashed generalized Rayleigh distribution, Communications inStatistics-Theory and Methods, 46 (10), 4686-4699.
Jodra, P., Gomez, H. W., Jimenez-Gamero, M. D., & Alba-Fernandez,M. V. (2017).The power Muth distribution . MathematicalModelling and Analysis, 22(2), 186-201.
Jodrá, P., Jiménez-Gamero, M. D. ve Alba-Fernández, M. V., 2015,On the Muth distribution, Mathematical Modelling and Analysis,20 (3), 291-310.
Kohansal, A. ve Bakouch, H. S., 2021,Estimation procedures forKumaraswamy distribution parameters under adaptive type-II hybridprogressive censoring, Communications in Statistics-Simulation andComputation, 50 (12), 4059-4078.
Krishna, H., Vivekanand ve Kumar, K., 2015,Estimation in Maxwelldistribution with randomly censored data, Journal of statisticalcomputation and simulation, 85 (17), 3560-3578.
Kuş, C., 2007,A new lifetime distribution, ComputationalStatistics & Data Analysis, 51 (9), 4497-4509.
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020,Weighted bivariate geometric distribution: Simulation andestimation, Communications in Statistics-Simulation andComputation, 49 (9), 2419-2443.
Ristić, M. M., & Balakrishnan, N. (2012),Thegamma-exponentiated exponential distribution. Journal of statisticalcomputation and simulation, 82(8), 1191-1206.
Shukla, K. K., Shanker, R. ve Tiwari, M. K., 2022,A new oneparameter discrete distribution and its applications, Journal ofStatistics and Management Systems, 25 (1), 269-283.
Vila, R. ve Niyazi Çankaya, M., 2022,A bimodal Weibulldistribution: properties and inference,Journal of AppliedStatistics, 49 (12), 3044-3062.