Movatterモバイル変換


[0]ホーム

URL:


DPP: Inference of Parameters of Normal Distributions from a Mixtureof Normals

This MCMC method takes a data numeric vector (Y) and assigns the elements of Y to a (potentially infinite) number of normal distributions. The individual normal distributions from a mixture of normals can be inferred. Following the method described in Escobar (1994) <doi:10.2307/2291223> we use a Dirichlet Process Prior (DPP) to describe stochastically our prior assumptions about the dimensionality of the data.

Version:0.1.2
Depends:methods,Rcpp (≥ 0.12.4),coda, stats
LinkingTo:Rcpp
Suggests:R.rsp
Published:2018-05-24
DOI:10.32614/CRAN.package.DPP
Author:Luis M. Avila [aut, cre], Michael R. May [aut], Jeff Ross-Ibarra [aut]
Maintainer:Luis M. Avila <lmavila at gmail.com>
License:MIT + fileLICENSE
NeedsCompilation:yes
CRAN checks:DPP results

Documentation:

Reference manual:DPP.html ,DPP.pdf
Vignettes:Getting started with DPP (source)
DPP Reference Manual (source)

Downloads:

Package source: DPP_0.1.2.tar.gz
Windows binaries: r-devel:DPP_0.1.2.zip, r-release:DPP_0.1.2.zip, r-oldrel:DPP_0.1.2.zip
macOS binaries: r-release (arm64):DPP_0.1.2.tgz, r-oldrel (arm64):DPP_0.1.2.tgz, r-release (x86_64):DPP_0.1.2.tgz, r-oldrel (x86_64):DPP_0.1.2.tgz
Old sources: DPP archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=DPPto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp