Movatterモバイル変換


[0]ホーム

URL:


kmed: Distance-Based k-Medoids

Algorithms of distance-based k-medoids clustering: simple and fast k-medoids, ranked k-medoids, and increasing number of clusters in k-medoids. Calculate distances for mixed variable data such as Gower, Podani, Wishart, Huang, Harikumar-PV, and Ahmad-Dey. Cluster validation applies internal and relative criteria. The internal criteria includes silhouette index and shadow values. The relative criterium applies bootstrap procedure producing a heatmap with a flexible reordering matrix algorithm such as complete, ward, or average linkages. The cluster result can be plotted in a marked barplot or pca biplot.

Version:0.4.2
Depends:R (≥ 2.10)
Imports:ggplot2
Suggests:knitr,rmarkdown
Published:2022-08-29
DOI:10.32614/CRAN.package.kmed
Author:Weksi Budiaji [aut, cre]
Maintainer:Weksi Budiaji <budiaji at untirta.ac.id>
License:GPL-3
NeedsCompilation:no
Materials:NEWS
CRAN checks:kmed results

Documentation:

Reference manual:kmed.html ,kmed.pdf
Vignettes:kmed: Distance-Based K-Medoids (source,R code)

Downloads:

Package source: kmed_0.4.2.tar.gz
Windows binaries: r-devel:kmed_0.4.2.zip, r-release:kmed_0.4.2.zip, r-oldrel:kmed_0.4.2.zip
macOS binaries: r-release (arm64):kmed_0.4.2.tgz, r-oldrel (arm64):kmed_0.4.2.tgz, r-release (x86_64):kmed_0.4.2.tgz, r-oldrel (x86_64):kmed_0.4.2.tgz
Old sources: kmed archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=kmedto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp