Movatterモバイル変換


[0]ホーム

URL:


hdqr: Fast Algorithm for Penalized Quantile Regression

Implements an efficient algorithm for fitting the entire regularization path of quantile regression models with elastic-net penalties using a generalized coordinate descent scheme. The framework also supports SCAD and MCP penalties. It is designed for high-dimensional datasets and emphasizes numerical accuracy and computational efficiency. This package implements the algorithms proposed in Tang, Q., Zhang, Y., & Wang, B. (2022) <https://openreview.net/pdf?id=RvwMTDYTOb>.

Version:1.0.2
Depends:R (≥ 3.5.0)
Imports:stats,Matrix, methods
Suggests:knitr,rmarkdown
Published:2025-09-26
DOI:10.32614/CRAN.package.hdqr
Author:Qian Tang [aut, cre], Yikai Zhang [aut], Boxiang Wang [aut]
Maintainer:Qian Tang <qian-tang at uiowa.edu>
License:GPL-2
NeedsCompilation:yes
Citation:hdqr citation info
CRAN checks:hdqr results

Documentation:

Reference manual:hdqr.html ,hdqr.pdf
Vignettes:Getting started with hdqr (source,R code)

Downloads:

Package source: hdqr_1.0.2.tar.gz
Windows binaries: r-devel:hdqr_1.0.2.zip, r-release:hdqr_1.0.2.zip, r-oldrel:hdqr_1.0.2.zip
macOS binaries: r-release (arm64):hdqr_1.0.2.tgz, r-oldrel (arm64):hdqr_1.0.2.tgz, r-release (x86_64):hdqr_1.0.2.tgz, r-oldrel (x86_64):hdqr_1.0.2.tgz
Old sources: hdqr archive

Reverse dependencies:

Reverse imports:QuanDA

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=hdqrto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp