Movatterモバイル変換


[0]ホーム

URL:


ddpca: Diagonally Dominant Principal Component Analysis

Efficient procedures for fitting the DD-PCA (Ke et al., 2019, <doi:10.48550/arXiv.1906.00051>) by decomposing a large covariance matrix into a low-rank matrix plus a diagonally dominant matrix. The implementation of DD-PCA includes the convex approach using the Alternating Direction Method of Multipliers (ADMM) and the non-convex approach using the iterative projection algorithm. Applications of DD-PCA to large covariance matrix estimation and global multiple testing are also included in this package.

Version:1.1
Imports:RSpectra,Matrix,quantreg,MASS
Published:2019-09-14
DOI:10.32614/CRAN.package.ddpca
Author:Tracy Ke [aut], Lingzhou Xue [aut], Fan Yang [aut, cre]
Maintainer:Fan Yang <fyang1 at uchicago.edu>
License:GPL-2
NeedsCompilation:no
CRAN checks:ddpca results

Documentation:

Reference manual:ddpca.html ,ddpca.pdf

Downloads:

Package source: ddpca_1.1.tar.gz
Windows binaries: r-devel:ddpca_1.1.zip, r-release:ddpca_1.1.zip, r-oldrel:ddpca_1.1.zip
macOS binaries: r-release (arm64):ddpca_1.1.tgz, r-oldrel (arm64):ddpca_1.1.tgz, r-release (x86_64):ddpca_1.1.tgz, r-oldrel (x86_64):ddpca_1.1.tgz
Old sources: ddpca archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=ddpcato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp