Movatterモバイル変換


[0]ホーム

URL:


gWQS: Generalized Weighted Quantile Sum Regression

Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.

Version:3.0.5
Depends:R (≥ 3.5.0)
Imports:ggplot2, stats,broom,rlist,MASS,reshape2,plotROC,knitr,kableExtra,nnet,future,future.apply,pscl,ggrepel,cowplot,Matrix,car, utils,bookdown
Suggests:markdown
Published:2023-11-16
DOI:10.32614/CRAN.package.gWQS
Author:Stefano Renzetti [aut, cre], Paul Curtin [aut], Allan C Just [ctb], Ghalib Bello [ctb], Chris Gennings [aut]
Maintainer:Stefano Renzetti <stefano.renzetti88 at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
Materials:README
CRAN checks:gWQS results

Documentation:

Reference manual:gWQS.html ,gWQS.pdf
Vignettes:How to use gWQS package (source,R code)

Downloads:

Package source: gWQS_3.0.5.tar.gz
Windows binaries: r-devel:gWQS_3.0.5.zip, r-release:gWQS_3.0.5.zip, r-oldrel:gWQS_3.0.5.zip
macOS binaries: r-release (arm64):gWQS_3.0.5.tgz, r-oldrel (arm64):gWQS_3.0.5.tgz, r-release (x86_64):gWQS_3.0.5.tgz, r-oldrel (x86_64):gWQS_3.0.5.tgz
Old sources: gWQS archive

Reverse dependencies:

Reverse imports:CompMix,lwqs,wqspt

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=gWQSto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp