Movatterモバイル変換


[0]ホーム

URL:


LSTMfactors: Determining the Number of Factors in Exploratory Factor Analysisby LSTM

A method for factor retention using a pre-trained Long Short Term Memory (LSTM) Network, which is originally developed by Hochreiter and Schmidhuber (1997) <doi:10.1162/neco.1997.9.8.1735>, is provided. The sample size of the dataset used to train the LSTM model is 1,000,000. Each sample is a batch of simulated response data with a specific latent factor structure. The eigenvalues of these response data will be used as sequential data to train the LSTM. The pre-trained LSTM is capable of factor retention for real response data with a true latent factor number ranging from 1 to 10, that is, determining the number of factors.

Version:1.0.0
Depends:R (≥ 4.3.0)
Imports:reticulate,EFAfactors
Published:2025-07-07
DOI:10.32614/CRAN.package.LSTMfactors
Author:Haijiang QinORCID iD [aut, cre, cph], Lei GuoORCID iD [aut, cph]
Maintainer:Haijiang Qin <haijiang133 at outlook.com>
License:GPL-3
URL:https://haijiangqin.com/LSTMfactors/
NeedsCompilation:yes
Materials:NEWS
CRAN checks:LSTMfactors results

Documentation:

Reference manual:LSTMfactors.html ,LSTMfactors.pdf

Downloads:

Package source: LSTMfactors_1.0.0.tar.gz
Windows binaries: r-devel:LSTMfactors_1.0.0.zip, r-release:LSTMfactors_1.0.0.zip, r-oldrel:LSTMfactors_1.0.0.zip
macOS binaries: r-release (arm64):LSTMfactors_1.0.0.tgz, r-oldrel (arm64):LSTMfactors_1.0.0.tgz, r-release (x86_64):LSTMfactors_1.0.0.tgz, r-oldrel (x86_64):LSTMfactors_1.0.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=LSTMfactorsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp