Movatterモバイル変換


[0]ホーム

URL:


wevid: Quantifying Performance of a Binary Classifier Through Weight ofEvidence

The distributions of the weight of evidence (log Bayes factor) favouring case over noncase status in a test dataset (or test folds generated by cross-validation) can be used to quantify the performance of a diagnostic test (McKeigue (2019), <doi:10.1177/0962280218776989>). The package can be used with any test dataset on which you have observed case-control status and have computed prior and posterior probabilities of case status using a model learned on a training dataset. To quantify how the predictor will behave as a risk stratifier, the quantiles of the distributions of weight of evidence in cases and controls can be calculated and plotted.

Version:0.6.2
Depends:R (≥ 2.10)
Imports:ggplot2,mclust,pROC (≥ 1.9),reshape2,zoo
Suggests:testthat (≥ 2.0.0)
Published:2019-09-12
DOI:10.32614/CRAN.package.wevid
Author:Paul McKeigueORCID iD [aut], Marco ColomboORCID iD [ctb, cre]
Maintainer:Marco Colombo <mar.colombo13 at gmail.com>
License:GPL-3
URL:http://www.homepages.ed.ac.uk/pmckeigu/preprints/classify/wevidtutorial.html
NeedsCompilation:no
Citation:wevid citation info
CRAN checks:wevid results

Documentation:

Reference manual:wevid.html ,wevid.pdf

Downloads:

Package source: wevid_0.6.2.tar.gz
Windows binaries: r-devel:wevid_0.6.2.zip, r-release:wevid_0.6.2.zip, r-oldrel:wevid_0.6.2.zip
macOS binaries: r-release (arm64):wevid_0.6.2.tgz, r-oldrel (arm64):wevid_0.6.2.tgz, r-release (x86_64):wevid_0.6.2.tgz, r-oldrel (x86_64):wevid_0.6.2.tgz
Old sources: wevid archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=wevidto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp