Movatterモバイル変換


[0]ホーム

URL:


brisk: Bayesian Benefit Risk Analysis

Quantitative methods for benefit-risk analysis help to condense complex decisions into a univariate metric describing the overall benefit relative to risk. One approach is to use the multi-criteria decision analysis framework (MCDA), as in Mussen, Salek, and Walker (2007) <doi:10.1002/pds.1435>. Bayesian benefit-risk analysis incorporates uncertainty through posterior distributions which are inputs to the benefit-risk framework. The brisk package provides functions to assist with Bayesian benefit-risk analyses, such as MCDA. Users input posterior samples, utility functions, weights, and the package outputs quantitative benefit-risk scores. The posterior of the benefit-risk scores for each group can be compared. Some plotting capabilities are also included.

Version:0.1.0
Imports:dplyr (≥ 1.0),ellipsis (≥ 0.3),ggplot2 (≥ 3.3),hitandrun (≥ 0.5),purrr (≥ 0.3),rlang (≥ 1.0),tidyr (≥ 1.1)
Suggests:knitr,fs (≥ 1.5),testthat (≥ 3.0.0),tibble (≥ 3.1),rmarkdown
Published:2022-08-31
DOI:10.32614/CRAN.package.brisk
Author:Richard Payne [aut, cre], Sai Dharmarajan [rev], Eli Lilly and Company [cph]
Maintainer:Richard Payne <paynestatistics at gmail.com>
BugReports:https://github.com/rich-payne/brisk/issues
License:MIT + fileLICENSE
URL:https://rich-payne.github.io/brisk/
NeedsCompilation:no
Materials:README
CRAN checks:brisk results

Documentation:

Reference manual:brisk.html ,brisk.pdf
Vignettes:Random Weights (source,R code)

Downloads:

Package source: brisk_0.1.0.tar.gz
Windows binaries: r-devel:brisk_0.1.0.zip, r-release:brisk_0.1.0.zip, r-oldrel:brisk_0.1.0.zip
macOS binaries: r-release (arm64):brisk_0.1.0.tgz, r-oldrel (arm64):brisk_0.1.0.tgz, r-release (x86_64):brisk_0.1.0.tgz, r-oldrel (x86_64):brisk_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=briskto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp