Movatterモバイル変換


[0]ホーム

URL:


PEAXAI: Probabilistic Efficiency Analysis Using Explainable ArtificialIntelligence

Provides a probabilistic framework that integrates Data Envelopment Analysis (DEA) (Banker et al., 1984) <doi:10.1287/mnsc.30.9.1078> with machine learning classifiers (Kuhn, 2008) <doi:10.18637/jss.v028.i05> to estimate both the (in)efficiency status and the probability of efficiency for decision-making units. The approach trains predictive models on DEA-derived efficiency labels (Charnes et al., 1985) <doi:10.1016/0304-4076(85)90133-2>, enabling explainable artificial intelligence (XAI) workflows with global and local interpretability tools, including permutation importance (Molnar et al., 2018) <doi:10.21105/joss.00786>, Shapley value explanations (Strumbelj & Kononenko, 2014) <doi:10.1007/s10115-013-0679-x>, and sensitivity analysis (Cortez, 2011) <https://CRAN.R-project.org/package=rminer>. The framework also supports probability-threshold peer selection and counterfactual improvement recommendations for benchmarking and policy evaluation. The probabilistic efficiency framework is detailed in González-Moyano et al. (2025) "Probability-based Technical Efficiency Analysis through Machine Learning", in review for publication.

Version:0.1.0
Depends:R (≥ 3.5)
Imports:Benchmarking,caret,deaR,dplyr,fastshap,iml,PRROC,pROC,rminer, stats
Suggests:ggplot2,knitr,rmarkdown,nnet
Published:2025-12-02
DOI:10.32614/CRAN.package.PEAXAI
Author:Ricardo González MoyanoORCID iD [cre, aut], Juan AparicioORCID iD [aut], José Luis ZofíoORCID iD [aut], Víctor EspañaORCID iD [aut]
Maintainer:Ricardo González Moyano <ricardo.gonzalezm at umh.es>
BugReports:https://github.com/rgonzalezmoyano/PEAXAI/issues
License:GPL-3
URL:https://github.com/rgonzalezmoyano/PEAXAI
NeedsCompilation:no
Language:en
CRAN checks:PEAXAI results

Documentation:

Reference manual:PEAXAI.html ,PEAXAI.pdf
Vignettes:PEAXAI: Example with Firms (source,R code)

Downloads:

Package source: PEAXAI_0.1.0.tar.gz
Windows binaries: r-devel:PEAXAI_0.1.0.zip, r-release:PEAXAI_0.1.0.zip, r-oldrel:PEAXAI_0.1.0.zip
macOS binaries: r-release (arm64):PEAXAI_0.1.0.tgz, r-oldrel (arm64):PEAXAI_0.1.0.tgz, r-release (x86_64):PEAXAI_0.1.0.tgz, r-oldrel (x86_64):PEAXAI_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PEAXAIto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp