Movatterモバイル変換


[0]ホーム

URL:


hdm: High-Dimensional Metrics

Implementation of selected high-dimensional statistical and econometric methods for estimation and inference. Efficient estimators and uniformly valid confidence intervals for various low-dimensional causal/ structural parameters are provided which appear in high-dimensional approximately sparse models. Including functions for fitting heteroscedastic robust Lasso regressions with non-Gaussian errors and for instrumental variable (IV) and treatment effect estimation in a high-dimensional setting. Moreover, the methods enable valid post-selection inference and rely on a theoretically grounded, data-driven choice of the penalty. Chernozhukov, Hansen, Spindler (2016) <doi:10.48550/arXiv.1603.01700>.

Version:0.3.2
Depends:R (≥ 3.0.0)
Imports:MASS,glmnet,ggplot2,checkmate,Formula, methods
Suggests:testthat,knitr,rmarkdown,formatR,xtable,mvtnorm,markdown
Published:2024-02-14
DOI:10.32614/CRAN.package.hdm
Author:Martin Spindler [cre, aut], Victor Chernozhukov [aut], Christian Hansen [aut], Philipp Bach [ctb]
Maintainer:Martin Spindler <martin.spindler at gmx.de>
License:MIT + fileLICENSE
NeedsCompilation:no
Citation:hdm citation info
Materials:README
In views:CausalInference,Econometrics,MachineLearning
CRAN checks:hdm results

Documentation:

Reference manual:hdm.html ,hdm.pdf
Vignettes:High-Dimensional Metrics in R (source,R code)

Downloads:

Package source: hdm_0.3.2.tar.gz
Windows binaries: r-devel:hdm_0.3.2.zip, r-release:hdm_0.3.2.zip, r-oldrel:hdm_0.3.2.zip
macOS binaries: r-release (arm64):hdm_0.3.2.tgz, r-oldrel (arm64):hdm_0.3.2.tgz, r-release (x86_64):hdm_0.3.2.tgz, r-oldrel (x86_64):hdm_0.3.2.tgz
Old sources: hdm archive

Reverse dependencies:

Reverse depends:tsapp
Reverse imports:ablasso,causalweight,hdcate
Reverse suggests:DirectEffects

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=hdmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp