Generalization of supervised principal component regression (SPCR; Bair et al., 2006, <doi:10.1198/016214505000000628>) to support continuous, binary, and discrete variables as outcomes and predictors (inspired by the 'superpc' R package <https://cran.r-project.org/package=superpc>).
| Version: | 0.9.5 |
| Depends: | R (≥ 2.10) |
| Imports: | dplyr,FactoMineR,ggplot2,MASS,MLmetrics,nnet,PCAmixdata,reshape2,rlang |
| Suggests: | knitr,lmtest,patchwork,rmarkdown,superpc,testthat (≥3.0.0) |
| Published: | 2025-11-08 |
| DOI: | 10.32614/CRAN.package.gspcr |
| Author: | Edoardo Costantini |
| Maintainer: | Edoardo Costantini <costantini.edoardo at yahoo.com> |
| License: | MIT + fileLICENSE |
| NeedsCompilation: | no |
| Materials: | README |
| CRAN checks: | gspcr results |
| Reference manual: | gspcr.html ,gspcr.pdf |
| Vignettes: | Vignette 1: Example analysis with GSPCR (source) Vignette 2: GSPCR specification options (source) Vignette 3: Alternatives approaches (source) |
| Package source: | gspcr_0.9.5.tar.gz |
| Windows binaries: | r-devel:gspcr_0.9.5.zip, r-release:gspcr_0.9.5.zip, r-oldrel:gspcr_0.9.5.zip |
| macOS binaries: | r-release (arm64):gspcr_0.9.5.tgz, r-oldrel (arm64):gspcr_0.9.5.tgz, r-release (x86_64):gspcr_0.9.5.tgz, r-oldrel (x86_64):gspcr_0.9.5.tgz |
| Old sources: | gspcr archive |
Please use the canonical formhttps://CRAN.R-project.org/package=gspcrto link to this page.