Movatterモバイル変換


[0]ホーム

URL:


rSDR: Robust Sufficient Dimension Reduction

A novel sufficient-dimension reduction method is robust against outliers using alpha-distance covariance and manifold-learning in dimensionality reduction problems. Please refer Hsin-Hsiung Huang, Feng Yu & Teng Zhang (2024) <doi:10.1080/10485252.2024.2313137> for the details.

Version:1.0.3.0
Imports:ManifoldOptim, methods,Rcpp,rstiefel,scatterplot3d,future,future.apply,ggplot2,ggsci
Suggests:expm,knitr,rmarkdown,Matrix,RcppNumerical,fdm2id
Published:2025-11-10
DOI:10.32614/CRAN.package.rSDR
Author:Sheau-Chiann ChenORCID iD [aut, cre], Shilin Zhao [aut], Hsin-Hsiung Bill HuangORCID iD [aut]
Maintainer:Sheau-Chiann Chen <sheau-chiann.chen.1 at vumc.org>
License:GPL (≥ 3)
NeedsCompilation:no
CRAN checks:rSDR results

Documentation:

Reference manual:rSDR.html ,rSDR.pdf
Vignettes:rSDR_vignette (source,R code)

Downloads:

Package source: rSDR_1.0.3.0.tar.gz
Windows binaries: r-devel:rSDR_1.0.3.0.zip, r-release:rSDR_1.0.3.0.zip, r-oldrel:rSDR_1.0.3.0.zip
macOS binaries: r-release (arm64):rSDR_1.0.3.0.tgz, r-oldrel (arm64):rSDR_1.0.3.0.tgz, r-release (x86_64):rSDR_1.0.3.0.tgz, r-oldrel (x86_64):rSDR_1.0.3.0.tgz
Old sources: rSDR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=rSDRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp