Movatterモバイル変換


[0]ホーム

URL:


glsm: Saturated Model Log-Likelihood for Multinomial Outcomes

When the response variable Y takes one of R > 1 values, the function 'glsm()' computes the maximum likelihood estimates (MLEs) of the parameters under four models: null, complete, saturated, and logistic. It also calculates the log-likelihood values for each model. This method assumes independent, non-identically distributed variables. For grouped data with a multinomial outcome, where observations are divided into J populations, the function 'glsm()' provides estimation for any number K of explanatory variables.

Version:0.0.0.6
Depends:R (≥ 3.5.0)
Imports:stats,dplyr (≥ 1.0.0),ggplot2 (≥ 1.0.0),VGAM (≥ 1.0.0),plyr
Published:2025-07-14
DOI:10.32614/CRAN.package.glsm
Author:Jorge VillalbaORCID iD [aut, cre], Humberto LlinasORCID iD [aut], Jorge BorjaORCID iD [aut], Jorge TilanoORCID iD [aut]
Maintainer:Jorge Villalba <jvillalba at utb.edu.co>
License:MIT + fileLICENSE
NeedsCompilation:no
Citation:glsm citation info
Materials:README
CRAN checks:glsm results

Documentation:

Reference manual:glsm.html ,glsm.pdf

Downloads:

Package source: glsm_0.0.0.6.tar.gz
Windows binaries: r-devel:glsm_0.0.0.6.zip, r-release:glsm_0.0.0.6.zip, r-oldrel:glsm_0.0.0.6.zip
macOS binaries: r-release (arm64):glsm_0.0.0.6.tgz, r-oldrel (arm64):glsm_0.0.0.6.tgz, r-release (x86_64):glsm_0.0.0.6.tgz, r-oldrel (x86_64):glsm_0.0.0.6.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=glsmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp