vimp: Perform Inference on Algorithm-Agnostic Variable Importance
Calculate point estimates of and valid confidence intervals for nonparametric, algorithm-agnostic variable importance measures in high and low dimensions, using flexible estimators of the underlying regression functions. For more information about the methods, please see Williamson et al. (Biometrics, 2020), Williamson et al. (JASA, 2021), and Williamson and Feng (ICML, 2020).
| Version: | 2.3.6 |
| Depends: | R (≥ 3.1.0) |
| Imports: | SuperLearner, stats,dplyr,magrittr,ROCR,tibble,rlang,MASS,data.table,boot |
| Suggests: | knitr,rmarkdown,gam,xgboost,glmnet,ranger,polspline,quadprog,covr,testthat,ggplot2,cowplot,cvAUC,tidyselect,WeightedROC,purrr |
| Published: | 2025-08-28 |
| DOI: | 10.32614/CRAN.package.vimp |
| Author: | Brian D. Williamson [aut, cre], Jean Feng [ctb], Charlie Wolock [ctb], Noah Simon [ths], Marco Carone [ths] |
| Maintainer: | Brian D. Williamson <brian.d.williamson at kp.org> |
| BugReports: | https://github.com/bdwilliamson/vimp/issues |
| License: | MIT + fileLICENSE |
| URL: | https://bdwilliamson.github.io/vimp/,https://github.com/bdwilliamson/vimp,http://bdwilliamson.github.io/vimp/ |
| NeedsCompilation: | no |
| Materials: | NEWS |
| CRAN checks: | vimp results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=vimpto link to this page.