mase: Model-Assisted Survey Estimators
A set of model-assisted survey estimators and corresponding variance estimators for single stage, unequal probability, without replacement sampling designs. All of the estimators can be written as a generalized regression estimator with the Horvitz-Thompson, ratio, post-stratified, and regression estimators summarized by Sarndal et al. (1992, ISBN:978-0-387-40620-6). Two of the estimators employ a statistical learning model as the assisting model: the elastic net regression estimator, which is an extension of the lasso regression estimator given by McConville et al. (2017) <doi:10.1093/jssam/smw041>, and the regression tree estimator described in McConville and Toth (2017) <doi:10.48550/arXiv.1712.05708>. The variance estimators which approximate the joint inclusion probabilities can be found in Berger and Tille (2009) <doi:10.1016/S0169-7161(08)00002-3> and the bootstrap variance estimator is presented in Mashreghi et al. (2016) <doi:10.1214/16-SS113>.
| Version: | 0.1.5.2 |
| Depends: | R (≥ 4.1.0) |
| Imports: | glmnet,survey,dplyr,tidyr,rpms,boot, stats,Rdpack,ellipsis,Rcpp |
| LinkingTo: | Rcpp,RcppEigen |
| Suggests: | roxygen2,testthat (≥ 3.0.0),knitr,rmarkdown |
| Published: | 2024-01-17 |
| DOI: | 10.32614/CRAN.package.mase |
| Author: | Kelly McConville [cre, aut, cph], Josh Yamamoto [aut], Becky Tang [aut], George Zhu [aut], Sida Li [ctb], Shirley Chueng [ctb], Daniell Toth [ctb] |
| Maintainer: | Kelly McConville <kmcconville at fas.harvard.edu> |
| License: | GPL-2 |
| NeedsCompilation: | yes |
| Citation: | mase citation info |
| Materials: | README |
| CRAN checks: | mase results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=maseto link to this page.