Movatterモバイル変換


[0]ホーム

URL:


VSOLassoBag: Variable Selection Oriented LASSO Bagging Algorithm

A wrapped LASSO approach by integrating an ensemble learning strategy to help select efficient, stable, and high confidential variables from omics-based data. Using a bagging strategy in combination of a parametric method or inflection point search method for cut-off threshold determination. This package can integrate and vote variables generated from multiple LASSO models to determine the optimal candidates. Luo H, Zhao Q, et al (2020) <doi:10.1126/scitranslmed.aax7533> for more details.

Version:1.0
Depends:R (≥ 3.6.0)
Imports:glmnet,survival,ggplot2,POT, parallel, utils,pbapply, methods,SummarizedExperiment
Suggests:rmarkdown,knitr,rmdformats,qpdf
Published:2025-09-01
DOI:10.32614/CRAN.package.VSOLassoBag
Author:Jiaqi Liang [aut], Chaoye Wang [aut, cre]
Maintainer:Chaoye Wang <wangcy1 at sysucc.org.cn>
License:GPL-3
NeedsCompilation:no
Materials:NEWS
CRAN checks:VSOLassoBag results

Documentation:

Reference manual:VSOLassoBag.html ,VSOLassoBag.pdf
Vignettes:VSOLassoBag (source,R code)

Downloads:

Package source: VSOLassoBag_1.0.tar.gz
Windows binaries: r-devel:VSOLassoBag_1.0.zip, r-release:VSOLassoBag_1.0.zip, r-oldrel:VSOLassoBag_1.0.zip
macOS binaries: r-release (arm64):VSOLassoBag_1.0.tgz, r-oldrel (arm64):VSOLassoBag_1.0.tgz, r-release (x86_64):VSOLassoBag_1.0.tgz, r-oldrel (x86_64):VSOLassoBag_1.0.tgz
Old sources: VSOLassoBag archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=VSOLassoBagto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp