Movatterモバイル変換


[0]ホーム

URL:


REN: Regularization Ensemble for Robust Portfolio Optimization

Portfolio optimization is achieved through a combination of regularization techniques and ensemble methods that are designed to generate stable out-of-sample return predictions, particularly in the presence of strong correlations among assets. The package includes functions for data preparation, parallel processing, and portfolio analysis using methods such as Mean-Variance, James-Stein, LASSO, Ridge Regression, and Equal Weighting. It also provides visualization tools and performance metrics, such as the Sharpe ratio, volatility, and maximum drawdown, to assess the results.

Version:0.1.0
Depends:R (≥ 2.10)
Imports:lubridate,glmnet,quadprog,doParallel,Matrix,tictoc,corpcor,ggplot2,reshape2,foreach, stats, parallel
Suggests:knitr,rmarkdown,KernSmooth,cluster,testthat (≥ 3.0.0)
Published:2024-10-10
DOI:10.32614/CRAN.package.REN
Author:Hardik Dixit [aut], Shijia Wang [aut], Bonsoo Koo [aut, cre], Cash Looi [aut], Hong Wang [aut]
Maintainer:Bonsoo Koo <bonsoo.koo at monash.edu>
License:AGPL (≥ 3)
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:REN results

Documentation:

Reference manual:REN.html ,REN.pdf
Vignettes:'REN': Regularization Ensemble for Portfolio Optimization (source,R code)

Downloads:

Package source: REN_0.1.0.tar.gz
Windows binaries: r-devel:REN_0.1.0.zip, r-release:REN_0.1.0.zip, r-oldrel:REN_0.1.0.zip
macOS binaries: r-release (arm64):REN_0.1.0.tgz, r-oldrel (arm64):REN_0.1.0.tgz, r-release (x86_64):REN_0.1.0.tgz, r-oldrel (x86_64):REN_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=RENto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp