Movatterモバイル変換


[0]ホーム

URL:


Examples

Giulia Lestini, Martin Fink and Andrew Hooker

Introduction

In this vignette, we try to highlight PopED features that may beuseful. Only code related to specific features we would like tohighlight is described here in this vignette. These features (and more)are presented as r-scripts in the “examples” folder in the PopEDinstallation directory. You can view a list of these example files usingthe commands:

ex_dir<-system.file("examples",package="PopED")list.files(ex_dir)#>  [1] "HCV_ode.c"#>  [2] "HCV_ode.o"#>  [3] "HCV_ode.so"#>  [4] "ex.1.a.PK.1.comp.oral.md.intro.R"#>  [5] "ex.1.b.PK.1.comp.oral.md.re-parameterize.R"#>  [6] "ex.1.c.PK.1.comp.oral.md.ODE.compiled.R"#>  [7] "ex.10.PKPD.HCV.compiled.R"#>  [8] "ex.11.PK.prior.R"#>  [9] "ex.12.covariate.distributions.R"#> [10] "ex.13.shrinkage.R"#> [11] "ex.14.PK.IOV.R"#> [12] "ex.15.full.covariance.matrix.R"#> [13] "ex.2.a.warfarin.evaluate.R"#> [14] "ex.2.b.warfarin.optimize.R"#> [15] "ex.2.c.warfarin.ODE.compiled.R"#> [16] "ex.2.d.warfarin.ED.R"#> [17] "ex.2.e.warfarin.Ds.R"#> [18] "ex.3.a.PKPD.1.comp.oral.md.imax.D-opt.R"#> [19] "ex.3.b.PKPD.1.comp.oral.md.imax.ED-opt.R"#> [20] "ex.4.PKPD.1.comp.emax.R"#> [21] "ex.5.PD.emax.hill.R"#> [22] "ex.6.PK.1.comp.oral.sd.R"#> [23] "ex.7.PK.1.comp.maturation.R"#> [24] "ex.8.tmdd_qss_one_target_compiled.R"#> [25] "ex.9.PK.2.comp.oral.md.ode.compiled.R"#> [26] "one_comp_oral_CL.c"#> [27] "one_comp_oral_CL.o"#> [28] "one_comp_oral_CL.so"#> [29] "tmdd_qss_one_target.c"#> [30] "tmdd_qss_one_target.o"#> [31] "tmdd_qss_one_target.so"#> [32] "two_comp_oral_CL.c"#> [33] "two_comp_oral_CL.o"#> [34] "two_comp_oral_CL.so"

You can then open one of the examples (for example,ex.1.a.PK.1.comp.oral.md.intro.R) using the followingcode

file_name<-"ex.1.a.PK.1.comp.oral.md.intro.R"ex_file<-system.file("examples",file_name,package="PopED")file.copy(ex_file,tempdir(),overwrite = T)file.edit(file.path(tempdir(),file_name))

The table below provides a check list of features for each of the 15available examples.

FeaturesEx1Ex2Ex3Ex4Ex5Ex6Ex7Ex8Ex9Ex10Ex11Ex12Ex13Ex14Ex15
Analytic modelXXXXXXX---XXXXX
ODE modelXX---X-XXX-----
Irregular dosing---------------
Full cov matrix W--------------X
Inter-occ variability-------------X-
Discrete covariates------X---X----
Continuous covariatesXXXX-XXXXXXXXXX
Multiple armsX-XX--XX--XX-X-
Multi response models--XX---X-X-----
Designs differ
across responses
---X---X-------
Calculate precision
of derived parameters
---------------
Power calculation----------X----
Include previous FIM----------X----
Shrinkage/Bayesian FIMXXXX--X--X--X--
Discrete optimizationXXX--X-X-----X-
Optimization
of multi-group designs
(same response)
X-XX--XX-----X-
Different optimal
sampling times
between groups
---------------
Optimization with constraining
sampling times
X-X----------X-
Optimization of subjects
per group
---------------

Note: All features are available in PopED but some are notdemonstrated in the supplied examples.

Analytic solution of PKPD model, multiple study arms

The full code for this example is available inex.4.PKPD.1.comp.emax.R.

Here we define a PKPD mode using analytical equations. The PK is aone compartment model with intravenous bolus administration and linearelimination. The PD is an ordinary Emax model driven by the PKconcentrations. The expected output of each measurement (PK or PD) isgiven in the vectormodel_switch (see below fordetails).

library(PopED)f_pkpdmodel<-function(model_switch,xt,parameters,poped.db){with(as.list(parameters),{    y=xt    MS<- model_switch# PK model    CONC= DOSE/V*exp(-CL/V*xt)# PD model    EFF= E0+ CONC*EMAX/(EC50+ CONC)    y[MS==1]= CONC[MS==1]    y[MS==2]= EFF[MS==2]return(list(y= y,poped.db=poped.db))  })}

The error model also has to accommodate both response models.

## -- Residual Error function## -- Proportional PK + additive PDf_Err<-function(model_switch,xt,parameters,epsi,poped.db){  returnArgs<-do.call(poped.db$model$ff_pointer,list(model_switch,xt,parameters,poped.db))  y<- returnArgs[[1]]  poped.db<- returnArgs[[2]]  MS<- model_switch  prop.err<- y*(1+epsi[,1])  add.err<- y+epsi[,2]  y[MS==1]= prop.err[MS==1]  y[MS==2]= add.err[MS==2]return(list(y= y,poped.db =poped.db ))}

In thepoped.db object the vector we specifymodel_switch in order to assign the sampling times definedin the vectorxt to the PK (=1) or PD (=2) model.

poped.db<-create.poped.database(# Modelff_fun=f_pkpdmodel,fError_fun=f_Err,fg_fun=f_etaToParam,sigma=diag(c(0.15,0.015)),bpop=c(CL=0.5,V=0.2,E0=1,EMAX=1,EC50=1),d=c(CL=0.09,V=0.09,E0=0.04,EC50=0.09),# Designgroupsize=20,m=3,xt =c(0.33,0.66,0.9,5,0.1,1,2,5),model_switch=c(1,1,1,1,2,2,2,2),a=list(c(DOSE=0),c(DOSE=1),c(DOSE=2)),# Design spaceminxt=0,maxxt=5,bUseGrouped_xt=1,maxa=c(DOSE=10),mina=c(DOSE=0))

The model predictions below show typical PK and PD profiles for threedose groups and the expected 95% prediction interval of the data. Theinitial design, as shown in thepoped.db object, consistsof 3 arms with doses of 0, 1, and 2 mg; PK sampling times are 0.33,0.66, 0.9, and 5 hours/days; PD sampling times are 0.1, 1, 2, and 5hours/days. Withmodel.names=c("PK","PD") one can name theoutputs in the graph.

plot_model_prediction(  poped.db,PI=TRUE,facet_scales="free",separate.groups=TRUE,model.names=c("PK","PD"))

ODE solution of PK model, multiple dosing

The full code for this example is available inex.9.PK.2.comp.oral.md.ode.compiled.R.

In this example, thedeSolve library needs to beinstalled for computing solutions to a system of differential equations.For faster solutions one can use pre-compiled code using theRcpp library (see below).

library(deSolve)

Here we define the two compartment model in R using deSolvenotation

PK.2.comp.oral.ode<-function(Time, State, Pars){with(as.list(c(State, Pars)), {    dA1<--KA*A1    dA2<- KA*A1+ A3* Q/V2-A2*(CL/V1+Q/V1)    dA3<- A2* Q/V1-A3* Q/V2return(list(c(dA1, dA2, dA3)))  })}

Now we define the initial conditions of the ODE systemA_ini with a named vector, in this case all compartmentsare initialized to zeroc(A1=0,A2=0,A3=0). The dosing inputis defined as a data.framedose_dat referring to the namedcompartmentvar = c("A1"), the specifieddose_times andvalue=c(DOSE*Favail) doseamounts. Note that the covariatesDOSE and the regimenTAU can differ by arm and be optimized (as shown inex.1.a.PK.1.comp.oral.md.intro.R). For more information seethe help pages for?deSolve::ode and?deSolve::events.

ff.PK.2.comp.oral.md.ode<-function(model_switch, xt, parameters, poped.db){with(as.list(parameters),{# initial conditions of ODE system    A_ini<-c(A1=0,A2=0,A3=0)#Set up time points to get ODE solutions    times_xt<-drop(xt)# sample times    times_start<-c(0)# add extra time for start of study    times_dose=seq(from=0,to=max(times_xt),by=TAU)# dose times    times<-unique(sort(c(times_start,times_xt,times_dose)))# combine it all# Dosing    dose_dat<-data.frame(var =c("A1"),time = times_dose,value =c(DOSE*Favail),method =c("add")    )    out<-ode(A_ini, times, PK.2.comp.oral.ode, parameters,events =list(data = dose_dat))#atol=1e-13,rtol=1e-13)    y= out[,"A2"]/V1    y=y[match(times_xt,out[,"time"])]    y=cbind(y)return(list(y=y,poped.db=poped.db))  })}

When creating a PopED database.ff_fun should point tothe function providing the solution to the ODE. Further, the names inthe parameter definition (fg) function should match theparameters used in the above two functions.

poped.db<-create.poped.database(# Modelff_fun="ff.PK.2.comp.oral.md.ode",fError_fun="feps.add.prop",fg_fun="fg",sigma=c(prop=0.1^2,add=0.05^2),bpop=c(CL=10,V1=100,KA=1,Q=3.0,V2=40.0,Favail=1),d=c(CL=0.15^2,KA=0.25^2),notfixed_bpop=c(1,1,1,1,1,0),# Designgroupsize=20,m=1,#number of groupsxt=c(48,50,55,65,70,85,90,120),# Design spaceminxt=0,maxxt=144,discrete_xt =list(0:144),a=c(DOSE=100,TAU=24),discrete_a =list(DOSE=seq(0,1000,by=100),TAU=8:24))

We plot the population prediction of the model for the initialdesign

plot_model_prediction(poped.db,model_num_points =500)

Faster computations with Rcpp: We could also definethe system using Rcpp, which will produce compiled code that should runfaster (further examples inex.2.c.warfarin.ODE.compiled.R). First we redefine the ODEsystem using Rcpp.

library(Rcpp)cppFunction('List two_comp_oral_ode_Rcpp(double Time, NumericVector A, NumericVector Pars) {     int n = A.size();     NumericVector dA(n);     double CL = Pars[0];     double V1 = Pars[1];     double KA = Pars[2];     double Q  = Pars[3];     double V2 = Pars[4];     dA[0] = -KA*A[0];     dA[1] = KA*A[0] - (CL/V1)*A[1] - Q/V1*A[1] + Q/V2*A[2];     dA[2] = Q/V1*A[1] - Q/V2*A[2];     return List::create(dA);  }')

Next we add the compiled function(two_comp_oral_ode_Rcpp) in the ODE solver.

ff.PK.2.comp.oral.md.ode.Rcpp<-function(model_switch, xt, parameters, poped.db){with(as.list(parameters),{# initial conditions of ODE system    A_ini<-c(A1=0,A2=0,A3=0)#Set up time points to get ODE solutions    times_xt<-drop(xt)# sample times    times_start<-c(0)# add extra time for start of study    times_dose=seq(from=0,to=max(times_xt),by=TAU)# dose times    times<-unique(sort(c(times_start,times_xt,times_dose)))# combine it all# Dosing    dose_dat<-data.frame(var =c("A1"),time = times_dose,value =c(DOSE*Favail),method =c("add")    )# Here "two_comp_oral_ode_Rcpp" is equivalent# to the non-compiled version "PK.2.comp.oral.ode".    out<-ode(A_ini, times, two_comp_oral_ode_Rcpp, parameters,events =list(data = dose_dat))#atol=1e-13,rtol=1e-13)    y= out[,"A2"]/V1    y=y[match(times_xt,out[,"time"])]    y=cbind(y)return(list(y=y,poped.db=poped.db))  })}

Finally we create a poped database to use these functions by updatingthe previously created database.

poped.db.Rcpp<-create.poped.database(  poped.db,ff_fun="ff.PK.2.comp.oral.md.ode.Rcpp")

We can compare the time for design evaluation with these two methodsof describing the same model.

tic(); eval<-evaluate_design(poped.db);toc()#> Elapsed time: 1.21 seconds.tic(); eval<-evaluate_design(poped.db.Rcpp);toc()#> Elapsed time: 0.551 seconds.

The difference is noticeable and gets larger for more complex ODEmodels.

ODE solution of TMDD model with 2 outputs, Multiple arms, differentdose routes, different number of sample times per arm

The full code for this example is available inex.8.tmdd_qss_one_target_compiled.R.

In the function that defines the dosing and derives the ODE solution,the discrete covariateSC_FLAG is used to give the doseeither intoA1 orA2, the sub-cutaneous or theIV compartment.

tmdd_qss_one_target_model_compiled<-function(model_switch,xt,parameters,poped.db){with(as.list(parameters),{    y=xt#The initialization vector for the compartment    A_ini<-c(A1=DOSE*SC_FLAG,A2=DOSE*(1-SC_FLAG),A3=0,A4=R0)#Set up time points for the ODE    times_xt<-drop(xt)    times<-sort(times_xt)    times<-c(0,times)## add extra time for start of integration# solve the ODE    out<-ode(A_ini, times, tmdd_qss_one_target_model_ode, parameters)#,atol=1e-13,rtol=1e-13)# extract the time points of the observations    out= out[match(times_xt,out[,"time"]),]# Match ODE output to measurements    RTOT= out[,"A4"]    CTOT= out[,"A2"]/V1    CFREE=0.5*((CTOT-RTOT-KSSS)+sqrt((CTOT-RTOT-KSSS)^2+4*KSSS*CTOT))    COMPLEX=((RTOT*CFREE)/(KSSS+CFREE))    RFREE= RTOT-COMPLEX    y[model_switch==1]= RTOT[model_switch==1]    y[model_switch==2]=CFREE[model_switch==2]#y[model_switch==3]=RFREE[model_switch==3]return(list(y=y,poped.db=poped.db))  })}

Two different sub-studies are defined, with different sampling timesper arm - in terms of total number of samples and the actual times1. Due tothis difference in numbers and the relatively complicated study designwe define the sample times (xt), what each sample time willmeasure (model_switch) and which samples should be taken atthe same study time (G_xt) as matrices. Here threevariablesxt,model_switch, andG_xt are matrices with each row representing one arm, andthe number of columns is the maximum number of samples (for allendpoints) in any of the arms (i.e.,max(ni)). To be clearabout which elements in the matrices should be considered we specify thenumber of samples per arm by defining the vectorni in thecreate.poped.database function.

xt<-zeros(6,30)study_1_xt<-matrix(rep(c(0.0417,0.25,0.5,1,3,7,14,21,28,35,42,49,56),8),nrow=4,byrow=TRUE)study_2_xt<-matrix(rep(c(0.0417,1,1,7,14,21,28,56,63,70,77,84,91,98,105),4),nrow=2,byrow=TRUE)xt[1:4,1:26]<- study_1_xtxt[5:6,]<- study_2_xtmodel_switch<-zeros(6,30)model_switch[1:4,1:13]<-1model_switch[1:4,14:26]<-2model_switch[5:6,1:15]<-1model_switch[5:6,16:30]<-2G_xt<-zeros(6,30)study_1_G_xt<-matrix(rep(c(1:13),8),nrow=4,byrow=TRUE)study_2_G_xt<-matrix(rep(c(14:28),4),nrow=2,byrow=TRUE)G_xt[1:4,1:26]<- study_1_G_xtG_xt[5:6,]<- study_2_G_xt

These can then be plugged into the normalpoped.dbsetup.

poped.db.2<-create.poped.database(# Modelff_fun=tmdd_qss_one_target_model_compiled,fError_fun=tmdd_qss_one_target_model_ruv,fg_fun=sfg,sigma=c(rtot_add=0.04,cfree_add=0.0225),bpop=c(CL=0.3,V1=3,Q=0.2,V2=3,FAVAIL=0.7,KA=0.5,VMAX=0,KMSS=0,R0=0.1,KSSS=0.015,KDEG=10,KINT=0.05),d=c(CL=0.09,V1=0.09,Q=0.04,V2=0.04,FAVAIL=0.04,KA=0.16,VMAX=0,KMSS=0,R0=0.09,KSSS=0.09,KDEG=0.04,KINT=0.04),notfixed_bpop=c(1,1,1,1,1,1,0,0,1,1,1,1),notfixed_d=c(1,1,1,1,1,1,0,0,1,1,1,1),# Designgroupsize=rbind(6,6,6,6,100,100),m=6,#number of groupsxt=xt,model_switch=model_switch,ni=rbind(26,26,26,26,30,30),a=list(c(DOSE=100,SC_FLAG=0),c(DOSE=300,SC_FLAG=0),c(DOSE=600,SC_FLAG=0),c(DOSE=1000,SC_FLAG=1),c(DOSE=600,SC_FLAG=0),c(DOSE=1000,SC_FLAG=1)),# Design spacebUseGrouped_xt=1,G_xt=G_xt,discrete_a =list(DOSE=seq(100,1000,by=100),SC_FLAG=c(0,1)))

Now we can plot population predictions for each group and evaluatethe design.

plot_model_prediction(poped.db.2,facet_scales="free")

eval_2<-evaluate_design(poped.db.2)round(eval_2$rse)# in percent
RSE in %
CL2
V12
Q2
V23
FAVAIL3
KA5
R03
KSSS3
KDEG3
KINT2
d_CL11
d_V112
d_Q22
d_V220
d_FAVAIL24
d_KA19
d_R012
d_KSSS13
d_KDEG20
d_KINT18
sig_rtot_add3
sig_cfree_add3

Model with continuous covariates

The R code for this example is available inex.12.covariate_distributions.R.

Let’s assume that we have a model with a covariate included in themodel description. Here we define a one-compartment PK model that usesallometric scaling with a weight effect on both clearance and volume ofdistribution.

mod_1<-function(model_switch,xt,parameters,poped.db){with(as.list(parameters),{    y=xt    CL=CL*(WT/70)^(WT_CL)    V=V*(WT/70)^(WT_V)    DOSE=1000*(WT/70)    y= DOSE/V*exp(-CL/V*xt)return(list(y= y,poped.db=poped.db))  })}par_1<-function(x,a,bpop,b,bocc){  parameters=c(CL=bpop[1]*exp(b[1]),V=bpop[2]*exp(b[2]),WT_CL=bpop[3],WT_V=bpop[4],WT=a[1])return( parameters )}

Now we define a design. In this case one group of individuals, wherewe define the individuals’ typical weight as 70 kg(a=c(WT=70)).

poped_db<-create.poped.database(ff_fun=mod_1,fg_fun=par_1,fError_fun=feps.add.prop,groupsize=50,m=1,sigma=c(prop=0.015,add=0.0015),notfixed_sigma =c(1,0),bpop=c(CL=3.8,V=20,WT_CL=0.75,WT_V=1),d=c(CL=0.05,V=0.05),xt=c(1,2,4,6,8,24),minxt=0,maxxt=24,bUseGrouped_xt=1,a=c(WT=70)  )

We can create a plot of the model prediction for the typicalindividual

plot_model_prediction(poped_db)

And evaluate the initial design

evaluate_design(poped_db)#> Problems inverting the matrix. Results could be misleading.#> Warning:   The following parameters are not estimable:#>   WT_CL, WT_V#>   Is the design adequate to estimate all parameters?#> $ofv#> [1] -Inf#>#> $fim#>                  CL          V WT_CL WT_V       d_CL        d_V   sig_prop#> CL       65.8889583 -0.7145374     0    0    0.00000    0.00000      0.000#> V        -0.7145374  2.2798156     0    0    0.00000    0.00000      0.000#> WT_CL     0.0000000  0.0000000     0    0    0.00000    0.00000      0.000#> WT_V      0.0000000  0.0000000     0    0    0.00000    0.00000      0.000#> d_CL      0.0000000  0.0000000     0    0 9052.31524   29.49016   1424.255#> d_V       0.0000000  0.0000000     0    0   29.49016 8316.09464   2483.900#> sig_prop  0.0000000  0.0000000     0    0 1424.25450 2483.90024 440009.144#>#> $rse#>        CL         V     WT_CL      WT_V      d_CL       d_V  sig_prop#>  3.247502  3.317107        NA        NA 21.026264 21.950179 10.061292

From the output produced we see that the covariate parameters can notbe estimated according to this design calculation (RSE of WT_CL and WT_VareNA). Why is that? Well, the calculation being done isassuming that every individual in the group has the same covariate (tospeed up the calculation). This is clearly a poor assumption in thiscase!

Distribution of covariates: We can improve thecomputation by assuming a distribution of the covariate (WT) in theindividuals in the study. We setgroupsize=1, the number ofgroups to be 50 (m=50) and assume that WT is sampled from anormal distribution with mean=70 and sd=10(a=as.list(rnorm(50, mean = 70, sd = 10)).

poped_db_2<-create.poped.database(ff_fun=mod_1,fg_fun=par_1,fError_fun=feps.add.prop,groupsize=1,m=50,sigma=c(prop=0.015,add=0.0015),notfixed_sigma =c(prop=1,add=0),bpop=c(CL=3.8,V=20,WT_CL=0.75,WT_V=1),d=c(CL=0.05,V=0.05),xt=c(1,2,4,6,8,24),minxt=0,maxxt=24,bUseGrouped_xt=1,a=as.list(rnorm(50,mean =70,sd =10))  )
ev<-evaluate_design(poped_db_2)round(ev$ofv,1)#> [1] 42.8
round(ev$rse)
RSE in %
CL3
V3
WT_CL25
WT_V19
d_CL21
d_V22
sig_prop10

Here we see that, given this distribution of weights, the covariateeffect parameters (WT_CL andWT_V) would bewell estimated.

However, we are only looking at one sample of 50 individuals. Maybe abetter approach is to look at the distribution of RSEs over a number ofexperiments given the expected weight distribution.

nsim<-30rse_list<-c()for(iin1:nsim){  poped_db_tmp<-create.poped.database(ff_fun=mod_1,fg_fun=par_1,fError_fun=feps.add.prop,groupsize=1,m=50,sigma=c(prop=0.015,add=0.0015),notfixed_sigma =c(1,0),bpop=c(CL=3.8,V=20,WT_CL=0.75,WT_V=1),d=c(CL=0.05,V=0.05),xt=c(1,2,4,6,8,24),minxt=0,maxxt=24,bUseGrouped_xt=1,a=as.list(rnorm(50,mean =70,sd=10)))  rse_tmp<-evaluate_design(poped_db_tmp)$rse  rse_list<-rbind(rse_list,rse_tmp)}(rse_quant<-apply(rse_list,2,quantile))
CLVWT_CLWT_Vd_CLd_Vsig_prop
0%3.253.3224.9319.1121.0221.9510.06
25%3.253.3228.2021.6121.0321.9510.07
50%3.273.3430.3123.2321.0321.9610.07
75%3.303.3732.7525.1021.0321.9610.07
100%3.473.5540.2330.8321.0321.9710.08

Note, that the variance of the RSE of the covariate effect is in thiscase strongly correlated with the variance of the weight distribution(not shown).

Model with discrete covariates

Seeex.11.PK.prior.R. This has the covariateisPediatric to distinguish between adults and pediatrics.Alternatively,DOSE andTAU in the firstexample can be considered as discrete covariates.

Model with Inter-Occasion Variability (IOV)

The full code for this example is available inex.14.PK.IOV.R.

The IOV is introduced withbocc[x,y] in the parameterdefinition function as a matrix with the first argumentxindicating the index for the IOV variances, and the second argumenty denoting the occasion. This is used in the example toderive to different clearance values, i.e.,CL_OCC_1 andCL_OCC_2.

sfg<-function(x,a,bpop,b,bocc){  parameters=c(CL_OCC_1=bpop[1]*exp(b[1]+bocc[1,1]),CL_OCC_2=bpop[1]*exp(b[1]+bocc[1,2]),V=bpop[2]*exp(b[2]),KA=bpop[3]*exp(b[3]),DOSE=a[1],TAU=a[2])return( parameters )}

These parameters can now be used in the model function to define thechange in parameters between the occasions (here the change occurs withthe 7th dose in a one-compartment model with first orderabsorption).

cppFunction('List one_comp_oral_ode(double Time, NumericVector A, NumericVector Pars) {   int n = A.size();   NumericVector dA(n);   double CL_OCC_1 = Pars[0];   double CL_OCC_2 = Pars[1];   double V = Pars[2];   double KA = Pars[3];   double TAU = Pars[4];   double N,CL;   N = floor(Time/TAU)+1;   CL = CL_OCC_1;   if(N>6) CL = CL_OCC_2;   dA[0] = -KA*A[0];   dA[1] = KA*A[0] - (CL/V)*A[1];   return List::create(dA);   }')ff.ode.rcpp<-function(model_switch, xt, parameters, poped.db){with(as.list(parameters),{    A_ini<-c(A1=0,A2=0)    times_xt<-drop(xt)#xt[,,drop=T]    dose_times=seq(from=0,to=max(times_xt),by=TAU)    eventdat<-data.frame(var =c("A1"),time = dose_times,value =c(DOSE),method =c("add"))    times<-sort(c(times_xt,dose_times))    out<-ode(A_ini, times, one_comp_oral_ode,c(CL_OCC_1,CL_OCC_2,V,KA,TAU),events =list(data = eventdat))#atol=1e-13,rtol=1e-13)    y= out[,"A2"]/(V)    y=y[match(times_xt,out[,"time"])]    y=cbind(y)return(list(y=y,poped.db=poped.db))  })}

The within-subject variability variances (docc) aredefined in the poped database as a 3-column matrix with one row perIOV-parameter, and the middle column giving the variance values.

poped.db<-create.poped.database(ff_fun=ff.ode.rcpp,fError_fun=feps.add.prop,fg_fun=sfg,bpop=c(CL=3.75,V=72.8,KA=0.25),d=c(CL=0.25^2,V=0.09,KA=0.09),sigma=c(prop=0.04,add=5e-6),notfixed_sigma=c(0,0),docc =matrix(c(0,0.09,0),nrow =1),m=2,groupsize=20,xt=c(1,2,8,240,245),minxt=c(0,0,0,240,240),maxxt=c(10,10,10,248,248),bUseGrouped_xt=1,a=list(c(DOSE=20,TAU=24),c(DOSE=40,TAU=24)),maxa=c(DOSE=200,TAU=24),mina=c(DOSE=0,TAU=24)  )

We can visualize the IOV by looking at an example individual. We seethe PK profile changes at the 7th dose (red line) due to the change inclearance.

library(ggplot2)set.seed(123)plot_model_prediction(  poped.db,PRED=F,IPRED=F,separate.groups=T,model_num_points =300,groupsize_sim =1,IPRED.lines = T,alpha.IPRED.lines=0.6,sample.times = F)+geom_vline(xintercept =24*6,color="red")

We can also see that the design is relatively poor for estimating theIOV parameter:

ev<-evaluate_design(poped.db)round(ev$rse)
RSE in %
CL6
V9
KA11
d_CL106
d_V43
d_KA63
D.occ[1,1]79

Full omega matrix

The full code for this example is available inex.15.full.covariance.matrix.R.

Thecovd object is used for defining the covariances ofthe between subject variances (off-diagonal elements of the fullvariance-covariance matrix for the between subject variability).

poped.db_with<-create.poped.database(ff_file="ff",fg_file="sfg",fError_file="feps",bpop=c(CL=0.15,V=8,KA=1.0,Favail=1),notfixed_bpop=c(1,1,1,0),d=c(CL=0.07,V=0.02,KA=0.6),covd =c(.03,.1,.09),sigma=c(prop=0.01),groupsize=32,xt=c(0.5,1,2,6,24,36,72,120),minxt=0,maxxt=120,a=70  )

What do the covariances mean?

(IIV<- poped.db_with$parameters$param.pt.val$d)#>      [,1] [,2] [,3]#> [1,] 0.07 0.03 0.10#> [2,] 0.03 0.02 0.09#> [3,] 0.10 0.09 0.60cov2cor(IIV)#>           [,1]      [,2]      [,3]#> [1,] 1.0000000 0.8017837 0.4879500#> [2,] 0.8017837 1.0000000 0.8215838#> [3,] 0.4879500 0.8215838 1.0000000

They indicate a correlation of the inter-individual variabilities,here of ca. 0.8 between clearance and volume, as well as between volumeand absorption rate.

We can clearly see a difference in the variance of the modelpredictions.

library(ggplot2)p1<-plot_model_prediction(poped.db,PI=TRUE)+ylim(-0.5,12)p2<-plot_model_prediction(poped.db_with,PI=TRUE)+ylim(-0.5,12)gridExtra::grid.arrange(p1+ggtitle("No covariance in BSV"), p2+ggtitle("Covariance in BSV"),nrow =1)

Evaluating the designs with and without the covariances:

ev1<-evaluate_design(poped.db)ev2<-evaluate_design(poped.db_with)
round(ev1$rse)round(ev2$rse)
Diagonal BSVCovariance in BSV
CL55
V33
KA1414
d_CL2626
d_V3030
d_KA2626
sig_prop1111
D[2,1]NA31
D[3,1]NA41
D[3,2]NA31

Note, that the precision of all other parameters is barely affectedby including the full covariance matrix. This is likely to be differentin practice with more ill-conditioned numerical problems.

Evaluate the same designs with full FIM (instead ofreduced)

ev1<-evaluate_design(poped.db,fim.calc.type=0)ev2<-evaluate_design(poped.db_with,fim.calc.type=0)round(ev1$rse,1)round(ev2$rse,1)
Diagonal BSVCovariance in BSV
CL44
V32
KA55
d_CL2627
d_V3131
d_KA2726
sig_prop1212
D[2,1]NA31
D[3,1]NA42
D[3,2]NA31

Include a prior FIM, compute power to identify a parameter

In this example we incorporate prior knowledge into a current studydesign calculation. First the expected FIM obtained from an experimentin adults is computed. Then this FIM is added to the current experimentin children. One could also use the observed FIM when using estimationsoftware to fit one realization of a design (from the $COVARIANCE stepin NONMEM for example). The full code for this example is available inex.11.PK.prior.R.

Note that we define the parameters for a one-compartment first-orderabsorption model using a covariate calledisPediatric toswitch between adult and pediatric models, andbpop[5]=pedCL is the factor to multiply the adult clearancebpop[3] to obtain the pediatric one.

sfg<-function(x,a,bpop,b,bocc){  parameters=c(V=bpop[1]*exp(b[1]),KA=bpop[2]*exp(b[2]),CL=bpop[3]*exp(b[3])*bpop[5]^a[3],# add covariate for pediatricsFavail=bpop[4],isPediatric = a[3],DOSE=a[1],TAU=a[2])return( parameters )}

The design and design space for adults is defined below (Two arms, 5sample time points per arm, doses of 20 and 40 mg,isPediatric = 0). As we want to pool the results (i.e. addthe FIMs together), we also have to provide thepedCLparameter so that both the adult and children FIMs have the samedimensions.

poped.db<-create.poped.database(ff_fun=ff.PK.1.comp.oral.md.CL,fg_fun=sfg,fError_fun=feps.add.prop,bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9,pedCL=0.8),notfixed_bpop=c(1,1,1,0,1),d=c(V=0.09,KA=0.09,CL=0.25^2),sigma=c(0.04,5e-6),notfixed_sigma=c(0,0),m=2,groupsize=20,xt=c(1,8,10,240,245),bUseGrouped_xt=1,a=list(c(DOSE=20,TAU=24,isPediatric =0),c(DOSE=40,TAU=24,isPediatric =0))  )

Create plot of model without variability

plot_model_prediction(poped.db,model_num_points =300)

To store the FIM from the adult design we evaluate this design

(outAdult =evaluate_design(poped.db))#> Problems inverting the matrix. Results could be misleading.#> Warning:   The following parameters are not estimable:#>   pedCL#>   Is the design adequate to estimate all parameters?#> $ofv#> [1] -Inf#>#> $fim#>                 V          KA          CL pedCL          d_V         d_KA#> V      0.05854391   -6.815269 -0.01531146     0    0.0000000   0.00000000#> KA    -6.81526942 2963.426688 -1.32113719     0    0.0000000   0.00000000#> CL    -0.01531146   -1.321137 37.50597895     0    0.0000000   0.00000000#> pedCL  0.00000000    0.000000  0.00000000     0    0.0000000   0.00000000#> d_V    0.00000000    0.000000  0.00000000     0 1203.3695137 192.31775149#> d_KA   0.00000000    0.000000  0.00000000     0  192.3177515 428.81459138#> d_CL   0.00000000    0.000000  0.00000000     0    0.2184104   0.01919009#>               d_CL#> V     0.000000e+00#> KA    0.000000e+00#> CL    0.000000e+00#> pedCL 0.000000e+00#> d_V   2.184104e-01#> d_KA  1.919009e-02#> d_CL  3.477252e+03#>#> $rse#>         V        KA        CL     pedCL       d_V      d_KA      d_CL#>  6.634931  8.587203  4.354792        NA 33.243601 55.689432 27.133255

It is obvious that we cannot estimate the pediatric covariate fromadult data only; hence the warning message. You can also note the zerosin the 4th column and 4th row of the FIM indicating thatpedCL cannot be estimated from the adult data.

We can evaluate the adult design without warning, by setting thepedCL parameter to be fixed (i.e., not estimated):

evaluate_design(create.poped.database(poped.db,notfixed_bpop=c(1,1,1,0,0)))#> $ofv#> [1] 29.70233#>#> $fim#>                V          KA          CL          d_V         d_KA         d_CL#> V     0.05854391   -6.815269 -0.01531146    0.0000000   0.00000000 0.000000e+00#> KA   -6.81526942 2963.426688 -1.32113719    0.0000000   0.00000000 0.000000e+00#> CL   -0.01531146   -1.321137 37.50597895    0.0000000   0.00000000 0.000000e+00#> d_V   0.00000000    0.000000  0.00000000 1203.3695137 192.31775149 2.184104e-01#> d_KA  0.00000000    0.000000  0.00000000  192.3177515 428.81459138 1.919009e-02#> d_CL  0.00000000    0.000000  0.00000000    0.2184104   0.01919009 3.477252e+03#>#> $rse#>         V        KA        CL       d_V      d_KA      d_CL#>  6.634931  8.587203  4.354792 33.243601 55.689432 27.133255

One obtains good estimates for all parameters for adults (<60% RSEfor all).

For pediatrics the covariateisPediatric = 1. We defineone arm, 4 sample-time points.

poped.db.ped<-create.poped.database(ff_fun=ff.PK.1.comp.oral.md.CL,fg_fun=sfg,fError_fun=feps.add.prop,bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9,pedCL=0.8),notfixed_bpop=c(1,1,1,0,1),d=c(V=0.09,KA=0.09,CL=0.25^2),sigma=c(0.04,5e-6),notfixed_sigma=c(0,0),m=1,groupsize=6,xt=c(1,2,6,240),bUseGrouped_xt=1,a=list(c(DOSE=40,TAU=24,isPediatric =1))  )

We can create a plot of the pediatric model without variability

plot_model_prediction(poped.db.ped,model_num_points =300)

Evaluate the design of the pediatrics study alone.

evaluate_design(poped.db.ped)#> Problems inverting the matrix. Results could be misleading.#> $ofv#> [1] -Inf#>#> $fim#>                  V         KA          CL        pedCL         d_V       d_KA#> V      0.007766643  -1.395981 -0.01126202  -0.05279073   0.0000000  0.0000000#> KA    -1.395980934 422.458209 -2.14666933 -10.06251250   0.0000000  0.0000000#> CL    -0.011262023  -2.146669  5.09936874  23.90329099   0.0000000  0.0000000#> pedCL -0.052790734 -10.062512 23.90329099 112.04667652   0.0000000  0.0000000#> d_V    0.000000000   0.000000  0.00000000   0.00000000 141.1922923 53.7923483#> d_KA   0.000000000   0.000000  0.00000000   0.00000000  53.7923483 58.0960085#> d_CL   0.000000000   0.000000  0.00000000   0.00000000   0.7877291  0.3375139#>              d_CL#> V       0.0000000#> KA      0.0000000#> CL      0.0000000#> pedCL   0.0000000#> d_V     0.7877291#> d_KA    0.3375139#> d_CL  428.5254900#>#> $rse#>           V          KA          CL       pedCL         d_V        d_KA#>  24.7208804  30.8495322   0.5200823  11.4275854 116.2309452 181.1977846#>        d_CL#>  77.2918849

Clearly the design has problems on its own.

We can add the prior information from the adult study and evaluatethat design (i.e., pooling adult and pediatric data).

poped.db.all<-create.poped.database(  poped.db.ped,prior_fim = outAdult$fim)(out.all<-evaluate_design(poped.db.all))#> $ofv#> [1] 34.96368#>#> $fim#>                  V         KA          CL        pedCL         d_V       d_KA#> V      0.007766643  -1.395981 -0.01126202  -0.05279073   0.0000000  0.0000000#> KA    -1.395980934 422.458209 -2.14666933 -10.06251250   0.0000000  0.0000000#> CL    -0.011262023  -2.146669  5.09936874  23.90329099   0.0000000  0.0000000#> pedCL -0.052790734 -10.062512 23.90329099 112.04667652   0.0000000  0.0000000#> d_V    0.000000000   0.000000  0.00000000   0.00000000 141.1922923 53.7923483#> d_KA   0.000000000   0.000000  0.00000000   0.00000000  53.7923483 58.0960085#> d_CL   0.000000000   0.000000  0.00000000   0.00000000   0.7877291  0.3375139#>              d_CL#> V       0.0000000#> KA      0.0000000#> CL      0.0000000#> pedCL   0.0000000#> d_V     0.7877291#> d_KA    0.3375139#> d_CL  428.5254900#>#> $rse#>         V        KA        CL     pedCL       d_V      d_KA      d_CL#>  6.381388  8.222819  4.354761 12.591940 31.808871 52.858399 25.601551

The pooled data leads to much higher precision in parameter estimatescompared to either study separately.

One can also obtain the power for estimating the pediatric differencein clearance (power in estimating bpop[5] as different from 1).

evaluate_power(poped.db.all,bpop_idx=5,h0=1,out=out.all)#> $ofv#> [1] 34.96368#>#> $fim#>                  V         KA          CL        pedCL         d_V       d_KA#> V      0.007766643  -1.395981 -0.01126202  -0.05279073   0.0000000  0.0000000#> KA    -1.395980934 422.458209 -2.14666933 -10.06251250   0.0000000  0.0000000#> CL    -0.011262023  -2.146669  5.09936874  23.90329099   0.0000000  0.0000000#> pedCL -0.052790734 -10.062512 23.90329099 112.04667652   0.0000000  0.0000000#> d_V    0.000000000   0.000000  0.00000000   0.00000000 141.1922923 53.7923483#> d_KA   0.000000000   0.000000  0.00000000   0.00000000  53.7923483 58.0960085#> d_CL   0.000000000   0.000000  0.00000000   0.00000000   0.7877291  0.3375139#>              d_CL#> V       0.0000000#> KA      0.0000000#> CL      0.0000000#> pedCL   0.0000000#> d_V     0.7877291#> d_KA    0.3375139#> d_CL  428.5254900#>#> $rse#>         V        KA        CL     pedCL       d_V      d_KA      d_CL#>  6.381388  8.222819  4.354761 12.591940 31.808871 52.858399 25.601551#>#> $power#>       Value      RSE power_pred power_want need_rse min_N_tot#> pedCL   0.8 12.59194   51.01851         80 8.923519        14

We see that to clearly distinguish this parameter one would need 14children in the pediatric study (for 80% power at\(\alpha=0.05\)).

Design evaluation including uncertainty in the model parameters(robust design)

In this example the aim is to evaluate a design incorporatinguncertainty around parameter values in the model. The full code for thisexample is available inex.2.d.warfarin.ED.R. Thisillustration is one of the Warfarin examples from software comparisonin: Nyberg et al.2.

We define the fixed effects in the model and add a 10% uncertainty toall but Favail. To do this we use a
Matrix defining the fixed effects, per row (row number =parameter_number) we should have:

Here we define a log-normal distribution

bpop_vals<-c(CL=0.15,V=8,KA=1.0,Favail=1)bpop_vals_ed<-cbind(ones(length(bpop_vals),1)*4,# log-normal distribution        bpop_vals,ones(length(bpop_vals),1)*(bpop_vals*0.1)^2)# 10% of bpop valuebpop_vals_ed["Favail",]<-c(0,1,0)bpop_vals_ed#>          bpop_vals#> CL     4      0.15 0.000225#> V      4      8.00 0.640000#> KA     4      1.00 0.010000#> Favail 0      1.00 0.000000

With this model and parameter set we define the initial design anddesign space. Specifically note thebpop=bpop_vals_ed andtheED_samp_size=20 arguments.ED_samp_size=20indicates the number of samples used in evaluating the E-familyobjective functions.

poped.db<-create.poped.database(ff_fun=ff,fg_fun=sfg,fError_fun=feps.add.prop,bpop=bpop_vals_ed,notfixed_bpop=c(1,1,1,0),d=c(CL=0.07,V=0.02,KA=0.6),sigma=c(0.01,0.25),groupsize=32,xt=c(0.5,1,2,6,24,36,72,120),minxt=0,maxxt=120,a=70,mina=0,maxa=100,ED_samp_size=20)

You can also provideED_samp_size argument to the designevaluation or optimization arguments:

tic();evaluate_design(poped.db,d_switch=FALSE,ED_samp_size=20);toc()#> $ofv#> [1] 55.41311#>#> $fim#>                     CL         V        KA         d_CL         d_V        d_KA#> CL         17590.84071 21.130793 10.320177 0.000000e+00     0.00000  0.00000000#> V             21.13079 17.817120 -3.529007 0.000000e+00     0.00000  0.00000000#> KA            10.32018 -3.529007 51.622520 0.000000e+00     0.00000  0.00000000#> d_CL           0.00000  0.000000  0.000000 2.319890e+03    10.62595  0.03827253#> d_V            0.00000  0.000000  0.000000 1.062595e+01 19005.72029 11.80346662#> d_KA           0.00000  0.000000  0.000000 3.827253e-02    11.80347 38.83793850#> SIGMA[1,1]     0.00000  0.000000  0.000000 7.336186e+02  9690.93156 64.79341332#> SIGMA[2,2]     0.00000  0.000000  0.000000 9.057819e+01   265.70389  2.95284399#>              SIGMA[1,1]  SIGMA[2,2]#> CL              0.00000    0.000000#> V               0.00000    0.000000#> KA              0.00000    0.000000#> d_CL          733.61860   90.578191#> d_V          9690.93156  265.703890#> d_KA           64.79341    2.952844#> SIGMA[1,1] 193719.81023 6622.636801#> SIGMA[2,2]   6622.63680  477.649386#>#> $rse#>         CL          V         KA       d_CL        d_V       d_KA SIGMA[1,1]#>   5.030673   2.983917  14.014958  29.787587  36.758952  26.753311  31.645011#> SIGMA[2,2]#>  25.341368#> Elapsed time: 0.081 seconds.

We can see that the result, based on MC sampling, is somewhatvariable with so few samples.

tic();evaluate_design(poped.db,d_switch=FALSE,ED_samp_size=20);toc()#> $ofv#> [1] 55.42045#>#> $fim#>                     CL         V        KA         d_CL         d_V        d_KA#> CL         17652.97859 20.900077 10.206898 0.000000e+00     0.00000  0.00000000#> V             20.90008 17.846603 -3.482767 0.000000e+00     0.00000  0.00000000#> KA            10.20690 -3.482767 51.214965 0.000000e+00     0.00000  0.00000000#> d_CL           0.00000  0.000000  0.000000 2.323385e+03    10.26722  0.03682497#> d_V            0.00000  0.000000  0.000000 1.026722e+01 19067.54099 11.76757081#> d_KA           0.00000  0.000000  0.000000 3.682497e-02    11.76757 38.83554961#> SIGMA[1,1]     0.00000  0.000000  0.000000 7.287665e+02  9671.83881 65.02022679#> SIGMA[2,2]     0.00000  0.000000  0.000000 9.042351e+01   265.46887  2.94967457#>              SIGMA[1,1]  SIGMA[2,2]#> CL              0.00000    0.000000#> V               0.00000    0.000000#> KA              0.00000    0.000000#> d_CL          728.76653   90.423509#> d_V          9671.83881  265.468868#> d_KA           65.02023    2.949675#> SIGMA[1,1] 194823.12196 6613.513007#> SIGMA[2,2]   6613.51301  476.316709#>#> $rse#>         CL          V         KA       d_CL        d_V       d_KA SIGMA[1,1]#>   5.021700   2.980981  14.068646  29.765030  36.691675  26.754137  31.469425#> SIGMA[2,2]#>  25.311870#> Elapsed time: 0.088 seconds.

Design evaluation for a subset of model parameters of interest (Dsoptimality)

Ds-optimality is a criterion that can be used if one is interested inestimating a subset “s” of the model parameters as precisely aspossible. The full code for this example is available inex.2.e.warfarin.Ds.R. First we define initial design anddesign space:

For Ds optimality we add theds_index option to thecreate.poped.database function to indicate whether aparameter is interesting (=0) or not (=1). Moreover, we set theofv_calc_type=6 for computing the Ds optimality criterion(it is set to 4 by default, for computing the log of the determinant ofthe FIM). More details are available by running the command?create.poped.database.

poped.db<-create.poped.database(ff_fun=ff,fg_fun=sfg,fError_fun=feps.add.prop,bpop=c(CL=0.15,V=8,KA=1.0,Favail=1),notfixed_bpop=c(1,1,1,0),d=c(CL=0.07,V=0.02,KA=0.6),sigma=c(0.01,0.25),groupsize=32,xt=c(0.5,1,2,6,24,36,72,120),minxt=0,maxxt=120,a=70,mina=0,maxa=100,ds_index=c(0,0,0,1,1,1,1,1),# size is number_of_non_fixed_parametersofv_calc_type=6)# Ds OFV calculation

Design evaluation:

evaluate_design(poped.db)#> $ofv#> [1] 16.49204#>#> $fim#>                     CL         V        KA         d_CL          d_V#> CL         17141.83891 20.838375 10.011000 0.000000e+00     0.000000#> V             20.83837 17.268051 -3.423641 0.000000e+00     0.000000#> KA            10.01100 -3.423641 49.864697 0.000000e+00     0.000000#> d_CL           0.00000  0.000000  0.000000 2.324341e+03     9.770352#> d_V            0.00000  0.000000  0.000000 9.770352e+00 19083.877564#> d_KA           0.00000  0.000000  0.000000 3.523364e-02    11.721317#> SIGMA[1,1]     0.00000  0.000000  0.000000 7.268410e+02  9656.158553#> SIGMA[2,2]     0.00000  0.000000  0.000000 9.062739e+01   266.487127#>                   d_KA   SIGMA[1,1]  SIGMA[2,2]#> CL          0.00000000      0.00000    0.000000#> V           0.00000000      0.00000    0.000000#> KA          0.00000000      0.00000    0.000000#> d_CL        0.03523364    726.84097   90.627386#> d_V        11.72131703   9656.15855  266.487127#> d_KA       38.85137516     64.78096    2.947285#> SIGMA[1,1] 64.78095548 192840.20092 6659.569867#> SIGMA[2,2]  2.94728469   6659.56987  475.500111#>#> $rse#>         CL          V         KA       d_CL        d_V       d_KA SIGMA[1,1]#>   5.096246   3.031164  14.260384  29.761226  36.681388  26.748640  32.011719#> SIGMA[2,2]#>  25.637971

Shrinkage

The full code for this example is available in“ex.13.shrinkage.R”.

To evaluate the estimation quality of the individual random effectsin the model (the b’s) we use the functionshrinkage().

shrinkage(poped.db)#> # A tibble: 3 × 5#>    d_KA   d_V `D[3,3]` type       group#>   <dbl> <dbl>    <dbl> <chr>      <chr>#> 1 0.504 0.367    0.424 shrink_var grp_1#> 2 0.295 0.205    0.241 shrink_sd  grp_1#> 3 0.710 0.303    0.206 se         grp_1

The output shows us the expected shrinkage on the variance scale(\(shrink_{var}=1-var(b_j)/D(j,j)\))and on the standard deviation scale (\(shrink_{sd}=1-sd(b_j)/sqrt(D(j,j))\)), aswell as the standard errors of the\(b_j\) estimates.

Further examples

Available in PopED, but not shown in examples:

To be implemented:


  1. Study 1 and 2 from table 2 in: Gibiansky, L., Gibiansky,E., & Bauer, R. (2012). Comparison of Nonmem 7.2 estimation methodsand parallel processing efficiency on a target-mediated drug dispositionmodel. Journal of Pharmacokinetics and Pharmacodynamics, 39(1), 17–35.https://doi.org/10.1007/s10928-011-9228-y↩︎

  2. Nyberg, J., Bazzoli, C., Ogungbenro, K., Aliev, A.,Leonov, S., Duffull, S., Hooker, A.C. and Mentré, F. (2014). Methods andsoftware tools for design evaluation for populationpharmacokinetics-pharmacodynamics studies. British Journal of ClinicalPharmacology, 79(1), 1–32.https://doi.org/10.1111/bcp.12352↩︎


[8]ページ先頭

©2009-2025 Movatter.jp