Movatterモバイル変換


[0]ホーム

URL:


clr: Curve Linear Regression via Dimension Reduction

A new methodology for linear regression with both curve response and curve regressors, which is described in Cho, Goude, Brossat and Yao (2013) <doi:10.1080/01621459.2012.722900> and (2015) <doi:10.1007/978-3-319-18732-7_3>. The key idea behind this methodology is dimension reduction based on a singular value decomposition in a Hilbert space, which reduces the curve regression problem to several scalar linear regression problems.

Version:0.1.2
Depends:R (≥ 2.10)
Imports:magrittr,lubridate,dplyr, stats
Published:2019-07-29
DOI:10.32614/CRAN.package.clr
Author:Amandine Pierrot with contributions and/or help from Qiwei Yao, Haeran Cho, Yannig Goude and Tony Aldon.
Maintainer:Amandine Pierrot <amandine.m.pierrot at gmail.com>
License:LGPL-2 |LGPL-2.1 |LGPL-3 [expanded from: LGPL (≥ 2.0)]
Copyright:EDF R&D 2017
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:clr results

Documentation:

Reference manual:clr.html ,clr.pdf

Downloads:

Package source: clr_0.1.2.tar.gz
Windows binaries: r-devel:clr_0.1.2.zip, r-release:clr_0.1.2.zip, r-oldrel:clr_0.1.2.zip
macOS binaries: r-release (arm64):clr_0.1.2.tgz, r-oldrel (arm64):clr_0.1.2.tgz, r-release (x86_64):clr_0.1.2.tgz, r-oldrel (x86_64):clr_0.1.2.tgz
Old sources: clr archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=clrto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp