Movatterモバイル変換


[0]ホーム

URL:


In packages

Introduction

This vignette serves two distinct, but related, purposes:

Before we go on, we’ll attach the packages we use, expose the versionof tidyr, and make a small dataset to use in examples.

library(tidyr)library(dplyr,warn.conflicts =FALSE)library(purrr)packageVersion("tidyr")#> [1] '1.3.1'mini_iris<-as_tibble(iris)[c(1,2,51,52,101,102), ]mini_iris#> # A tibble: 6 × 5#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species#>          <dbl>       <dbl>        <dbl>       <dbl> <fct>#> 1          5.1         3.5          1.4         0.2 setosa#> 2          4.9         3            1.4         0.2 setosa#> 3          7           3.2          4.7         1.4 versicolor#> 4          6.4         3.2          4.5         1.5 versicolor#> 5          6.3         3.3          6           2.5 virginica#> 6          5.8         2.7          5.1         1.9 virginica

Using tidyr in packages

Here we assume that you’re already familiar with using tidyr infunctions, as described invignette("programming.Rmd").There are two important considerations when using tidyr in apackage:

Fixed column names

If you know the column names, this code works in the same wayregardless of whether its inside or outside of a package:

mini_iris%>%nest(petal =c(Petal.Length, Petal.Width),sepal =c(Sepal.Length, Sepal.Width))#> # A tibble: 3 × 3#>   Species    petal            sepal#>   <fct>      <list>           <list>#> 1 setosa     <tibble [2 × 2]> <tibble [2 × 2]>#> 2 versicolor <tibble [2 × 2]> <tibble [2 × 2]>#> 3 virginica  <tibble [2 × 2]> <tibble [2 × 2]>

ButR CMD check will warn about undefined globalvariables (Petal.Length,Petal.Width,Sepal.Length, andSepal.Width), because itdoesn’t know thatnest() is looking for the variablesinside ofmini_iris (i.e. Petal.Length andfriends are data-variables, not env-variables).

The easiest way to silence this note is to useall_of().all_of() is a tidyselect helper (likestarts_with(),ends_with(), etc.) that takescolumn names stored as strings:

mini_iris%>%nest(petal =all_of(c("Petal.Length","Petal.Width")),sepal =all_of(c("Sepal.Length","Sepal.Width")))#> # A tibble: 3 × 3#>   Species    petal            sepal#>   <fct>      <list>           <list>#> 1 setosa     <tibble [2 × 2]> <tibble [2 × 2]>#> 2 versicolor <tibble [2 × 2]> <tibble [2 × 2]>#> 3 virginica  <tibble [2 × 2]> <tibble [2 × 2]>

Alternatively, you may want to useany_of() if it is OKthat some of the specified variables cannot be found in the inputdata.

Thetidyselect packageoffers an entire family of select helpers. You are probably alreadyfamiliar with them from usingdplyr::select().

Continuous integration

Hopefully you’ve already adopted continuous integration for yourpackage, in whichR CMD check (which includes your owntests) is run on a regular basis, e.g. every time you push changes toyour package’s source on GitHub or similar. The tidyverse team currentlyrelies most heavily on GitHub Actions, so that will be our example.usethis::use_github_action() can help you get started.

We recommend adding a workflow that targets the devel version oftidyr. When should you do this?

Example of a GitHub Actions workflow that tests your package againstthe development version of tidyr:

on:push:branches:- mainpull_request:branches:- mainname: R-CMD-check-tidyr-develjobs:R-CMD-check:runs-on: macOS-lateststeps:-uses: actions/checkout@v2-uses: r-lib/actions/setup-r@v1-name: Install dependencies        run:|          install.packages(c("remotes", "rcmdcheck"))          remotes::install_deps(dependencies = TRUE)          remotes::install_github("tidyverse/tidyr")shell: Rscript {0}-name: Checkrun: rcmdcheck::rcmdcheck(args = "--no-manual", error_on = "error")shell: Rscript {0}

GitHub Actions are an evolving landscape, so you can always mine theworkflows for tidyr itself (tidyverse/tidyr/.github/workflows)or the mainr-lib/actionsrepo for ideas.

tidyr v0.8.3 -> v1.0.0

v1.0.0 makes considerable changes to the interface ofnest() andunnest() in order to bring them inline with newer tidyverse conventions. I have tried to make thefunctions as backward compatible as possible and to give informativewarning messages, but I could not cover 100% of use cases, so you mayneed to change your package code. This guide will help you do so with aminimum of pain.

Ideally, you’ll tweak your package so that it works with both tidyr0.8.3 and tidyr 1.0.0. This makes life considerably easier because itmeans there’s no need to coordinate CRAN submissions - you can submityour package that works with both tidyr versions, before I submit tidyrto CRAN. This section describes our recommend practices for doing so,drawing from the general principles described inhttps://design.tidyverse.org/changes-multivers.html.

If you use continuous integration already, westrongly recommend adding a build that tests with thedevelopment version of tidyr; see above for details.

This section briefly describes how to run different code fordifferent versions of tidyr, then goes through the major changes thatmight require workarounds:

If you’re struggling with a problem that’s not described here, pleasereach out viagithub oremail so we can help out.

Conditional code

Sometimes you’ll be able to write code that works with v0.8.3and v1.0.0. But this often requires code that’s notparticularly natural for either version and you’d be better off to(temporarily) have separate code paths, each containing non-contrivedcode. You get to re-use your existing code in the “old” branch, whichwill eventually be phased out, and write clean, forward-looking code inthe “new” branch.

The basic approach looks like this. First you define a function thatreturnsTRUE for new versions of tidyr:

tidyr_new_interface<-function() {packageVersion("tidyr")>"0.8.99"}

We highly recommend keeping this as a function because it provides anobvious place to jot any transition notes for your package, and it makesit easier to remove transitional code later on. Another benefit is thatthe tidyr version is determined atrun time, not atbuildtime, and will therefore detect your user’s current tidyrversion.

Then in your functions, you use anif statement to calldifferent code for different versions:

my_function_inside_a_package<-function(...)# my code hereif (tidyr_new_interface()) {# Freshly written code for v1.0.0    out<- tidyr::nest(df,data =any_of(c("x","y","z")))  }else {# Existing code for v0.8.3    out<- tidyr::nest(df, x, y, z)  }# more code here}

If your new code uses a function that only exists in tidyr 1.0.0, youwill get aNOTE fromR CMD check: this is oneof the few notes that you can explain in your CRAN submission comments.Just mention that it’s for forward compatibility with tidyr 1.0.0, andCRAN will let your package through.

New syntax fornest()

What changed:

Why it changed:

Before and after examples:

# v0.8.3mini_iris%>%nest(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width,.key ="my_data")# v1.0.0mini_iris%>%nest(my_data =c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))# v1.0.0 avoiding R CMD checkNOTEmini_iris%>%nest(my_data =any_of(c("Sepal.Length","Sepal.Width","Petal.Length","Petal.Width")))# or equivalently:mini_iris%>%nest(my_data =!any_of("Species"))

If you need a quick and dirty fix without having to think, just callnest_legacy() instead ofnest(). It’s the sameasnest() in v0.8.3:

if (tidyr_new_interface()) {  out<- tidyr::nest_legacy(df, x, y, z)}else {  out<- tidyr::nest(df, x, y, z)}

New syntax forunnest()

What changed:

Why it changed:

Before and after:

nested<- mini_iris%>%nest(my_data =c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))# v0.8.3 automatically unnests list-colsnested%>%unnest()# v1.0.0 must be told which columns to unnestnested%>%unnest(any_of("my_data"))

If you need a quick and dirty fix without having to think, just callunnest_legacy() instead ofunnest(). It’s thesame asunnest() in v0.8.3:

if (tidyr_new_interface()) {  out<- tidyr::unnest_legacy(df)}else {  out<- tidyr::unnest(df)}

nest() preserves groups

What changed:

Why it changed:

If the fact thatnest() now preserves groups isproblematic downstream, you have a few choices:

Imagine we usedgroup_by() thennest() onmini_iris, then we computed on the list-columnoutsidethe data frame.

(df<- mini_iris%>%group_by(Species)%>%nest())#> # A tibble: 3 × 2#> # Groups:   Species [3]#>   Species    data#>   <fct>      <list>#> 1 setosa     <tibble [2 × 4]>#> 2 versicolor <tibble [2 × 4]>#> 3 virginica  <tibble [2 × 4]>(external_variable<-map_int(df$data, nrow))#> [1] 2 2 2

And now we try to add that back to the datapost hoc:

df%>%mutate(n_rows = external_variable)#> Error in `mutate()`:#> ℹ In argument: `n_rows = external_variable`.#> ℹ In group 1: `Species = setosa`.#> Caused by error:#> ! `n_rows` must be size 1, not 3.

This fails becausedf is grouped andmutate() is group-aware, so it’s hard to add a completelyexternal variable. Other than pragmaticallyungroup()ing,what can we do? One option is to work inside the data frame, i.e. bringthemap() inside themutate(), and design theproblem away:

df%>%mutate(n_rows =map_int(data, nrow))#> # A tibble: 3 × 3#> # Groups:   Species [3]#>   Species    data             n_rows#>   <fct>      <list>            <int>#> 1 setosa     <tibble [2 × 4]>      2#> 2 versicolor <tibble [2 × 4]>      2#> 3 virginica  <tibble [2 × 4]>      2

If, somehow, the grouping seems appropriate AND working inside thedata frame is not an option,tibble::add_column() isgroup-unaware. It lets you add external data to a grouped dataframe.

df%>%  tibble::add_column(n_rows = external_variable)#> # A tibble: 3 × 3#> # Groups:   Species [3]#>   Species    data             n_rows#>   <fct>      <list>            <int>#> 1 setosa     <tibble [2 × 4]>      2#> 2 versicolor <tibble [2 × 4]>      2#> 3 virginica  <tibble [2 × 4]>      2

nest_() andunnest_() are defunct

What changed:

Why it changed:

Before and after:

# v0.8.3mini_iris%>%nest_(key_col ="my_data",nest_cols =c("Sepal.Length","Sepal.Width","Petal.Length","Petal.Width")  )nested%>%unnest_(~ my_data)# v1.0.0mini_iris%>%nest(my_data =any_of(c("Sepal.Length","Sepal.Width","Petal.Length","Petal.Width")))nested%>%unnest(any_of("my_data"))

[8]ページ先頭

©2009-2025 Movatter.jp