Movatterモバイル変換


[0]ホーム

URL:


SMLE: Joint Feature Screening via Sparse MLE

Feature screening is a powerful tool in processing ultrahigh dimensional data. It attempts to screen out most irrelevant features in preparation for a more elaborate analysis. Xu and Chen (2014)<doi:10.1080/01621459.2013.879531> proposed an effective screening method SMLE, which naturally incorporates the joint effects among features in the screening process. This package provides an efficient implementation of SMLE-screening for high-dimensional linear, logistic, and Poisson models. The package also provides a function for conducting accurate post-screening feature selection based on an iterative hard-thresholding procedure and a user-specified selection criterion.

Version:2.2-2
Depends:R (≥ 4.0.0)
Imports:glmnet,matrixcalc,mvnfast
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2025-01-29
DOI:10.32614/CRAN.package.SMLE
Author:Qianxiang Zang [aut, cre], Chen Xu [aut], Kelly Burkett [aut]
Maintainer:Qianxiang Zang <SMLEmaintainer at gmail.com>
License:GPL-3
NeedsCompilation:no
Citation:SMLE citation info
CRAN checks:SMLE results

Documentation:

Reference manual:SMLE.html ,SMLE.pdf
Vignettes:An Introduction to SMLE (source,R code)

Downloads:

Package source: SMLE_2.2-2.tar.gz
Windows binaries: r-devel:SMLE_2.2-2.zip, r-release:SMLE_2.2-2.zip, r-oldrel:SMLE_2.2-2.zip
macOS binaries: r-release (arm64):SMLE_2.2-2.tgz, r-oldrel (arm64):SMLE_2.2-2.tgz, r-release (x86_64):SMLE_2.2-2.tgz, r-oldrel (x86_64):SMLE_2.2-2.tgz
Old sources: SMLE archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SMLEto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp