Movatterモバイル変換


[0]ホーム

URL:


GPareto: Gaussian Processes for Pareto Front Estimation and Optimization

Gaussian process regression models, a.k.a. Kriging models, are applied to global multi-objective optimization of black-box functions. Multi-objective Expected Improvement and Step-wise Uncertainty Reduction sequential infill criteria are available. A quantification of uncertainty on Pareto fronts is provided using conditional simulations.

Version:1.1.9
Depends:DiceKriging,emoa
Imports:Rcpp (≥ 0.12.15), methods,rgenoud,pbivnorm,pso,randtoolbox,KrigInv,MASS,DiceDesign,ks,rgl
LinkingTo:Rcpp
Suggests:knitr
Published:2025-08-25
DOI:10.32614/CRAN.package.GPareto
Author:Mickael BinoisORCID iD [aut, cre], Victor Picheny [aut]
Maintainer:Mickael Binois <mickael.binois at inria.fr>
BugReports:https://github.com/mbinois/GPareto/issues
License:GPL-3
URL:https://github.com/mbinois/GPareto
NeedsCompilation:yes
Citation:GPareto citation info
Materials:README,NEWS
In views:Optimization
CRAN checks:GPareto results

Documentation:

Reference manual:GPareto.html ,GPareto.pdf
Vignettes:a guide to the GPareto package (source,R code)

Downloads:

Package source: GPareto_1.1.9.tar.gz
Windows binaries: r-devel:GPareto_1.1.9.zip, r-release:GPareto_1.1.9.zip, r-oldrel:GPareto_1.1.9.zip
macOS binaries: r-release (arm64):GPareto_1.1.9.tgz, r-oldrel (arm64):GPareto_1.1.9.tgz, r-release (x86_64):GPareto_1.1.9.tgz, r-oldrel (x86_64):GPareto_1.1.9.tgz
Old sources: GPareto archive

Reverse dependencies:

Reverse imports:GPGame
Reverse suggests:biopixR,DiceOptim

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=GParetoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp