Movatterモバイル変換


[0]ホーム

URL:


BCDAG: Bayesian Structure and Causal Learning of Gaussian DirectedGraphs

A collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>.

Version:1.1.3
Depends:R (≥ 2.10)
Imports:graph, graphics,gRbase,Rgraphviz, grDevices,lattice, methods,mvtnorm, stats, utils
Suggests:rmarkdown,knitr,testthat (≥ 3.0.0)
Published:2025-02-28
DOI:10.32614/CRAN.package.BCDAG
Author:Federico Castelletti [aut], Alessandro Mascaro [aut, cre, cph]
Maintainer:Alessandro Mascaro <alessandro.mascaro at upf.edu>
BugReports:https://github.com/alesmascaro/BCDAG/issues
License:MIT + fileLICENSE
URL:https://github.com/alesmascaro/BCDAG
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:BCDAG results

Documentation:

Reference manual:BCDAG.html ,BCDAG.pdf
Vignettes:Random data generation from Gaussian DAG models (source,R code)
Elaborate on the output of 'learn_DAG()' using get_ functions (source,R code)
MCMC scheme for posterior inference of Gaussian DAG models: the 'learn_DAG()' function (source,R code)

Downloads:

Package source: BCDAG_1.1.3.tar.gz
Windows binaries: r-devel:BCDAG_1.1.3.zip, r-release:BCDAG_1.1.3.zip, r-oldrel:BCDAG_1.1.3.zip
macOS binaries: r-release (arm64):BCDAG_1.1.3.tgz, r-oldrel (arm64):BCDAG_1.1.3.tgz, r-release (x86_64):BCDAG_1.1.3.tgz, r-oldrel (x86_64):BCDAG_1.1.3.tgz
Old sources: BCDAG archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BCDAGto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp