Movatterモバイル変換
[0]ホーム
ingredients 2.3.0
- breaking change:
calculate_variable_splits() now treatsinteger variables ascategorical. This changeis propagated toceteris_paribus(),partial_dependence(),accumulated_dependence(),conditional_dependence(),aggregate_profiles(),DALEX::predict_profile(),DALEX::model_profile() - fix an error in
ceteris_paribus /calculate_variable_splits whentidymodels usesinteger variables#145 - fix an error in
show_observations#148.This change is propagated toDALEX::plot.predict_profile()#540. - fix#149by replacing all
class(x) = "y" withis(x, "y")
ingredients 2.2.1
- added
facet_scales parameter toplot.aggregated_profiles_explainer ('free_x'by default)#138andplot.ceteris_paribus_explainer ('free_x'or'free_y' by default, depending on plot type)#136
ingredients 2.2.0
- fixes explanations when data has one column#137
ingredients 2.0.1
- code and documentation maintenance#130
- fixed an error when
N = NULL inpartial_dependence() etc.#134
ingredients 2.0
plot.ceteris_paribus_explainer now by default forcategorical variables plots profiles (not lines -prev default- norbars)- ALE plots are now centered around average y_hat#126
- colors from DrWhy color palette is used for CP#125
ingredients 1.3.1
- default
subtitle value inplot.fi changedtoNULL fromNA (unification) - now in the
ceteris_paribus function one can specify howgrid points shall be calculated, seevariable_splits_type ceteris_paribus and aggregates are now working withmissing data, this solves#120plot(ceteris_paribus) change defaultcolortolabel orids if more than one profile is detected,this solves#123ceteris_paribus has now argumentvariable_splits_with_obs which included values fromnew_observations in thevariable_splits, thissolves#124
ingredients 1.3.0
- deprecate
n_sample argument infeature_importance (now it’sN)#113 plot_profile now handles multilabel models
ingredients 1.2.0
DALEX is moved to Suggests as in#112plot_categorical_ceteris_paribus can plot bars(again)- add
bind_plots function
ingredients 1.1.0
- support
R v4.0 and depend onR v3.5 tocomply withDALEX - new arguments
title andsubtitle inseveral plots
ingredients 1.0.0
- change
dependency todependence#103
ingredients 0.5.2
ceteris_paribus profiles are now working forcategorical variablesshow_profiles,show_observations,show_residuals are now working for categoricalvariables
ingredients 0.5.1
- synchronisation with changes in DALEX 0.5
- new argument
desc_sorting inplot.variable_importance_explainer#94
ingredients 0.5.0
feature_importance now does15permutations on each variable by default. Use theBargument to change this number- added boxplots to
plot.feature_importance andplotD3.feature_importance that showcase the permutationdata - in
aggregate_profiles: preserve_x_ columnfactor order and sort its values#82
ingredients 0.4.2
aggregate_profiles use now gaussian kernel smoothing.Use thespan argument for fine control over this parameter(#79)- change
variable_type andvariablesarguments usage in theaggregate_profiles,plot.ceteris_paribus andplotD3.ceteris_paribus - remove
variable_type argument fromplotD3.aggregated_profiles (now the same as inplot.aggregated_profiles) - Kasia Pekala is moved as contributor to the
DALEXtra asaspect_importance is moved toDALEXtra as well(Seev0.3.12 changelog) - added Travis-CI for OSX
ingredients 0.4.1
- fixed rounding problem in the describe function (#76)
ingredients 0.4
ingredients 0.3.12
aspect_importance is moved toDALEXtra (#66)- examples are updated in order to reflect changes in
titanic_imputed fromDALEX (#65)
ingredients 0.3.11
- modified
plot.aspect_importance - it can plot more thansingle figure
- modified
triplot,plot.aspect_importanceandplot_group_variables to add more clarity in plots andallow some parameterization
ingredients 0.3.10
- added
triplot function that illustrates hierarchicalaspect_importance() groupings - changes in
aspect_importance() functions - added back the vigniette for
aspect_importance()
ingredients 0.3.9
- change
only_numerical parameter tovariable_type in functions aggregated_profiles(),cluster_profiles(), plot() and others, as requested in #15
ingredients 0.3.8
- Natural language description generated with
describe()function forceteris_paribus(),feature_importance() andaggregate_profiles()explanations.
ingredients 0.3.7
aggregated_profiles_conditional andaggregated_profiles_accumulated are rewritten with somecode fixes
ingredients 0.3.6
- a new version of
lime is implemented in thelime()/aspect_importance() function. - Kasia Pekala and Huber Baniecki are added as contributors.
ingredients 0.3.5
- new feature#29.Feature importance now takes an argument
B that replicatespermutationsB times and calculates average from droploss.
ingredients 0.3.4
plotD3 now supports Ceteris Paribus Profiles.feature_importance now can takevariable_grouping argument that assess importance of groupof features- fix in ceteris_paribus, now it handles models with just onevariable
- fix#27for multiple rows
ingredients 0.3.3
show_profiles andshow_residuals functionsextend Ceteris Paribus Plots.show_aggreagated_profiles is renamed toshow_aggregated_profiles- centering of ggplot2 title
ingredients 0.3.2
- added new functions
describe() andprint.ceteris_paribus_descriptions() for text baseddescriptions of Ceteris Paribus explainers plot.ceteris_paribus_explainer works now also forcategorical variables. Use theonly_numerical = FALSE toforce bars
ingredients 0.3.1
- added references to PM VEE
partial_profiles(),accumulated_profiles()andconditional_profiles for variable effects- major changes in function names and file names
ingredients 0.3
ceteris_paribus_2d extends classical ceteris paribusprofilesceteris_paribus_oscillations calculates oscilations forceteris paribus profiles- fixed examples and file names
ingredients 0.2
cluster_profiles helps to identify interactionspartial_dependency calculates partial dependencyplotsaggregate_profiles calculates partial dependency plotsand much more
ingredients 0.1
- port of
model_feature_importance andmodel_feature_response fromDALEX toingredients - added tests
[8]ページ先頭