Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Dimension Reduction for Outlier Detection
Version:1.0.4
Maintainer:Sevvandi Kandanaarachchi <sevvandik@gmail.com>
Description:A dimension reduction technique for outlier detection. DOBIN: a Distance based Outlier BasIs using Neighbours, constructs a set of basis vectors for outlier detection. This is not an outlier detection method; rather it is a pre-processing method for outlier detection. It brings outliers to the fore-front using fewer basis vectors (Kandanaarachchi, Hyndman 2020) <doi:10.1080/10618600.2020.1807353>.
License:MIT + file LICENSE
Encoding:UTF-8
Imports:dbscan, ggplot2, pracma
RoxygenNote:7.2.1
Suggests:knitr, rmarkdown, OutliersO3, FNN
VignetteBuilder:knitr
Depends:R (≥ 3.4.0)
URL:https://sevvandi.github.io/dobin/
NeedsCompilation:no
Packaged:2022-08-25 22:03:32 UTC; kan092
Author:Sevvandi KandanaarachchiORCID iD [aut, cre]
Repository:CRAN
Date/Publication:2022-08-25 22:52:33 UTC

dobin: Dimension Reduction for Outlier Detection

Description

logo

A dimension reduction technique for outlier detection. DOBIN: a Distance based Outlier BasIs using Neighbours, constructs a set of basis vectors for outlier detection. This is not an outlier detection method; rather it is a pre-processing method for outlier detection. It brings outliers to the fore-front using fewer basis vectors (Kandanaarachchi, Hyndman 2020)doi:10.1080/10618600.2020.1807353.

Author(s)

Maintainer: Sevvandi Kandanaarachchisevvandik@gmail.com (ORCID)

See Also

Useful links:


Plots the first two components of the dobin space.

Description

Scatterplot of the first two columns in the dobin space.

Usage

## S3 method for class 'dobin'autoplot(object, ...)

Arguments

object

The output of the function 'dobin'.

...

Other arguments currently ignored.

Value

A ggplot object.

Examples

X <- rbind(  data.frame(x = rnorm(500),             y = rnorm(500),             z = rnorm(500)),  data.frame(x = rnorm(5, mean = 10, sd = 0.2),             y = rnorm(5, mean = 10, sd = 0.2),             z = rnorm(5, mean = 10, sd = 0.2)))dob <- dobin(X)autoplot(dob)

Computes a set of basis vectors for outlier detection.

Description

This function computes a set of basis vectors suitable for outlier detection.

Usage

dobin(xx, frac = 0.95, norm = 1, k = NULL)

Arguments

xx

The input data in a dataframe, matrix or tibble format.

frac

The cut-off quantile forY space. Default is0.95.

norm

The normalization technique. Default is Min-Max, which normalizes each column to values between 0 and 1.norm = 0 skips normalization. Other values of norm defaults to Median-IQR normalization.

k

Parameterk for k nearest neighbours with a default value of5% of the number of observations with a cap of 20.

Value

A list with the following components:

rotation

The basis vectors suitable for outlier detection.

coords

The dobin coordinates of the dataxx.

Yspace

The The associatedY space.

Ypairs

The pairs inxx used to construct theY space.

zerosdcols

Columns inxx with zero standard deviation. This is computed only if the number of columns are greater than the number of rows.

Examples

# A bimodal distribution in six dimensions, with 5 outliers in the middle.set.seed(1)x2 <- rnorm(405)x3 <- rnorm(405)x4 <- rnorm(405)x5 <- rnorm(405)x6 <- rnorm(405)x1_1 <- rnorm(mean = 5, 400)mu2 <-  0x1_2 <- rnorm(5, mean=mu2, sd=0.2)x1 <- c(x1_1, x1_2)X1 <- cbind(x1,x2,x3,x4,x5,x6)X2 <- cbind(-1*x1_1,x2[1:400],x3[1:400],x4[1:400],x5[1:400],x6[1:400])X <- rbind(X1, X2)labs <- c(rep(0,400), rep(1,5), rep(0,400))dob <- dobin(X)autoplot(dob)

Objects exported from other packages

Description

These objects are imported from other packages. Follow the linksbelow to see their documentation.

ggplot2

autoplot


[8]ページ先頭

©2009-2025 Movatter.jp