Tools for bioinformatics modeling using recursive transformer-inspired architectures, autoencoders, random forests, XGBoost, and stacked ensemble models. Includes utilities for cross-validation, calibration, benchmarking, and threshold optimization in predictive modeling workflows. The methodology builds on ensemble learning (Breiman 2001 <doi:10.1023/A:1010933404324>), gradient boosting (Chen and Guestrin 2016 <doi:10.1145/2939672.2939785>), autoencoders (Hinton and Salakhutdinov 2006 <doi:10.1126/science.1127647>), and recursive transformer efficiency approaches such as Mixture-of-Recursions (Bae et al. 2025 <doi:10.48550/arXiv.2507.10524>).
| Version: | 0.1.1 |
| Depends: | R (≥ 4.2.0) |
| Imports: | caret,recipes,themis,xgboost,magrittr,dplyr,pROC |
| Suggests: | randomForest,testthat (≥ 3.0.0),PRROC,ggplot2,purrr,tibble,yardstick,knitr,rmarkdown |
| Published: | 2025-12-10 |
| DOI: | 10.32614/CRAN.package.BioMoR |
| Author: | MD. Arshad [aut, cre] |
| Maintainer: | MD. Arshad <arshad10867c at gmail.com> |
| License: | MIT + fileLICENSE |
| NeedsCompilation: | no |
| Materials: | NEWS |
| CRAN checks: | BioMoR results |
| Reference manual: | BioMoR.html ,BioMoR.pdf |
| Vignettes: | BioMoR Autoencoder and Embeddings (source,R code) BioMoR Benchmarking Tutorial (source,R code) Getting Started with BioMoR (source,R code) |
| Package source: | BioMoR_0.1.1.tar.gz |
| Windows binaries: | r-devel:BioMoR_0.1.1.zip, r-release:BioMoR_0.1.1.zip, r-oldrel:BioMoR_0.1.1.zip |
| macOS binaries: | r-release (arm64):BioMoR_0.1.1.tgz, r-oldrel (arm64):BioMoR_0.1.1.tgz, r-release (x86_64):BioMoR_0.1.1.tgz, r-oldrel (x86_64):BioMoR_0.1.1.tgz |
| Old sources: | BioMoR archive |
Please use the canonical formhttps://CRAN.R-project.org/package=BioMoRto link to this page.