Movatterモバイル変換


[0]ホーム

URL:


npcs: Neyman-Pearson Classification via Cost-Sensitive Learning

We connect the multi-class Neyman-Pearson classification (NP) problem to the cost-sensitive learning (CS) problem, and propose two algorithms (NPMC-CX and NPMC-ER) to solve the multi-class NP problem through cost-sensitive learning tools. Under certain conditions, the two algorithms are shown to satisfy multi-class NP properties. More details are available in the paper "Neyman-Pearson Multi-class Classification via Cost-sensitive Learning" (Ye Tian and Yang Feng, 2021).

Version:0.1.1
Depends:R (≥ 3.5.0)
Imports:dfoptim,magrittr,smotefamily,foreach,caret,formatR,dplyr,forcats,ggplot2,tidyr,nnet
Suggests:knitr,rmarkdown,gbm
Published:2023-04-27
DOI:10.32614/CRAN.package.npcs
Author:Ye Tian [aut], Ching-Tsung Tsai [aut, cre], Yang Feng [aut]
Maintainer:Ching-Tsung Tsai <tctsung at nyu.edu>
License:GPL-2
NeedsCompilation:no
CRAN checks:npcs results

Documentation:

Reference manual:npcs.html ,npcs.pdf
Vignettes:npcs-demo (source,R code)

Downloads:

Package source: npcs_0.1.1.tar.gz
Windows binaries: r-devel:npcs_0.1.1.zip, r-release:npcs_0.1.1.zip, r-oldrel:npcs_0.1.1.zip
macOS binaries: r-release (arm64):npcs_0.1.1.tgz, r-oldrel (arm64):npcs_0.1.1.tgz, r-release (x86_64):npcs_0.1.1.tgz, r-oldrel (x86_64):npcs_0.1.1.tgz
Old sources: npcs archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=npcsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp