Movatterモバイル変換


[0]ホーム

URL:


tenm

CRAN statusR-CMD-checktest-coverageCodecov test coverage

An R package with a set of functions to calibrate time-specificecological niche models. Time-specific niche modeling (TENM) is a novelapproach that allows calibrating niche models with high temporalresolution spatial information, which aims to reduce niche estimationbiases. Although TENM could improve distribution estimates, few workshave used them. The goal oftenm R package is to providemethods and functions to calibrate time-specific niche models, lettingusers execute a strict calibration and selection process of niche modelsbased on ellipsoids, as well as functions to project the potentialdistribution in the present and in global change scenarios.

Installation

You can install the development version of tenm fromGitHub with:

if (!require('devtools'))install.packages('devtools')devtools::install_github("luismurao/tenm")# If you want to build vignette, install pandoc before and thendevtools::install_github('luismurao/tenm',build_vignettes=TRUE)

Example

We start with a simple example to show the basic functions of thepackage. We will work with a dataset ofAbroniagraminea, an endemic lizard from the Mexican Sierra MadreOriental.

First, we load thetenm R package.

library(tenm)## basic example code

Now we load theabronia dataset, which containsgeographical information about the presence ofAbronia gramineain its area of distribution. This dataset has also information about theyear of observation and theGBIFdoi.

data("abronia")head(abronia)#>            species decimalLongitude decimalLatitude year#> 1 Abronia graminea        -98.17773        19.96523 2014#> 2 Abronia graminea        -98.13753        19.87006 2014#> 3 Abronia graminea        -98.07042        19.89668 2014#> 4 Abronia graminea        -98.13003        19.86861 2014#> 5 Abronia graminea        -98.14894        19.84450 2014#> 6 Abronia graminea        -98.15909        19.86878 2014#>                             gbif_doi#> 1 https://doi.org/10.15468/dl.teyjm9#> 2 https://doi.org/10.15468/dl.teyjm9#> 3 https://doi.org/10.15468/dl.teyjm9#> 4 https://doi.org/10.15468/dl.teyjm9#> 5 https://doi.org/10.15468/dl.teyjm9#> 6 https://doi.org/10.15468/dl.teyjm9
dim(abronia)#> [1] 106   5

We plot the geographic information to see howAbroniagraminea is distributed.

colorss<-hcl.colors(length(unique(abronia$year)))par(mar=c(4,4,2,2))plot(abronia$decimalLongitude, abronia$decimalLatitude,col=colorss,pch=19,cex=0.75,xlab="Longitude",ylab="Latitude",xlim=c(-98.35,-96.7))legend("bottomleft",legend =sort(unique(abronia$year))[1:20],cex=0.85,pt.cex =1,bty ="n",pch=19,col =colorss[1:20])legend("bottomright",legend =sort(unique(abronia$year))[21:length(unique(abronia$year))],cex=0.85,pt.cex =1,bty ="n",pch=19,col =colorss[21:length(unique(abronia$year))])
Fig. 1. Occurrence points of *Abronia graminea*. Colors represent the year of observation.

Fig. 1. Occurrence points ofAbronia graminea. Colors representthe year of observation.

Note that some occurrences are overlapped but belong todifferent years.

Standard data thinning

A relevant step when curating occurrence data is to eliminateduplicated geographical information, which depends on several factors,including spatial autocorrelation and the spatial resolution of themodeling layers. Let’s see what happens when we eliminate duplicatedinformation as defined by the spatial resolution of our modeling layers.To do this, we will use thetenm::clean_dup function of thetenm R package.

# Load a modeling layertempora_layers_dir<-system.file("extdata/bio",package ="tenm")tenm_mask<- terra::rast(file.path(tempora_layers_dir,"1939/bio_01.tif"))ab_1<- tenm::clean_dup(data =abronia,longitude ="decimalLongitude",latitude ="decimalLatitude",threshold = terra::res(tenm_mask),by_mask =FALSE,raster_mask =NULL)tidyr::as_tibble(ab_1)#> # A tibble: 10 × 5#>    species          decimalLongitude decimalLatitude  year gbif_doi#>    <chr>                       <dbl>           <dbl> <int> <chr>#>  1 Abronia graminea            -97.5            19.5  1995 https://doi.org/10.1…#>  2 Abronia graminea            -97.0            18.2  1993 https://doi.org/10.1…#>  3 Abronia graminea            -98.0            19.8  1980 https://doi.org/10.1…#>  4 Abronia graminea            -97.7            19.6  2012 https://doi.org/10.1…#>  5 Abronia graminea            -97.9            20.1  2015 https://doi.org/10.1…#>  6 Abronia graminea            -97.4            18.5  1952 https://doi.org/10.1…#>  7 Abronia graminea            -97.1            18.9  1998 https://doi.org/10.1…#>  8 Abronia graminea            -97.3            19.0  1983 https://doi.org/10.1…#>  9 Abronia graminea            -97.3            18.7  1973 https://doi.org/10.1…#> 10 Abronia graminea            -97.0            19.7  1972 https://doi.org/10.1…

After applying our spatial thinning, we obtained only tenobservations from 106 occurrences. We lost a lot of information!!! Thefunctiontenm::clean_dup has a method to clean duplicatedrecords according to a raster mask layer. The above avoids losingrecords that might occur in different pixels but fall within thedistance used as threshold for cleaning.

ab_by_mask<- tenm::clean_dup(data =abronia,longitude ="decimalLongitude",latitude ="decimalLatitude",threshold = terra::res(tenm_mask),by_mask =TRUE,raster_mask = tenm_mask)tidyr::as_tibble(ab_by_mask)#> # A tibble: 16 × 5#>    species          decimalLongitude decimalLatitude  year gbif_doi#>    <chr>                       <dbl>           <dbl> <int> <chr>#>  1 Abronia graminea            -98.2            20.0  2014 https://doi.org/10.1…#>  2 Abronia graminea            -98.1            19.9  2014 https://doi.org/10.1…#>  3 Abronia graminea            -98.1            19.8  2014 https://doi.org/10.1…#>  4 Abronia graminea            -97.9            19.9  2014 https://doi.org/10.1…#>  5 Abronia graminea            -97.3            18.7  1963 https://doi.org/10.1…#>  6 Abronia graminea            -97.1            18.3  1996 https://doi.org/10.1…#>  7 Abronia graminea            -97.4            18.8  1941 https://doi.org/10.1…#>  8 Abronia graminea            -97.4            18.7  1988 https://doi.org/10.1…#>  9 Abronia graminea            -97.0            19.6  1991 https://doi.org/10.1…#> 10 Abronia graminea            -97.4            19.1  2002 https://doi.org/10.1…#> 11 Abronia graminea            -97.5            19.5  1995 https://doi.org/10.1…#> 12 Abronia graminea            -97.0            18.2  1993 https://doi.org/10.1…#> 13 Abronia graminea            -97.7            19.6  2012 https://doi.org/10.1…#> 14 Abronia graminea            -97.9            20.1  2015 https://doi.org/10.1…#> 15 Abronia graminea            -97.1            18.9  1998 https://doi.org/10.1…#> 16 Abronia graminea            -97.3            19.0  1983 https://doi.org/10.1…

We recovered 6 records, not bad! On the other hand, we did notaccount for the fact that some occurrences come from different years.Thetenm package is designed to deal with occurrencescoming from different periods as long as the user has environmentallayers matching the years of occurrence observations.

Time-specific niche modeling

Let’s apply the functions and methods to work with time-specificniche models. First, we load our data.

library(tenm)data("abronia")

Now, we indicate the path where our time-specific modeling layers arelocated.

tempora_layers_dir<-system.file("extdata/bio",package ="tenm")print(tempora_layers_dir)#> [1] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio"

We explore the structure of the directory that contains our modelinglayers.

list.dirs(tempora_layers_dir,recursive =FALSE)#>  [1] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1939"#>  [2] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1940"#>  [3] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1941"#>  [4] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1950"#>  [5] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1952"#>  [6] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1963"#>  [7] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1969"#>  [8] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1970"#>  [9] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1971"#> [10] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1972"#> [11] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1973"#> [12] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1974"#> [13] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1976"#> [14] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1977"#> [15] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1980"#> [16] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1981"#> [17] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1982"#> [18] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1983"#> [19] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1988"#> [20] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1991"#> [21] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1993"#> [22] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1994"#> [23] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1995"#> [24] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1996"#> [25] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1998"#> [26] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/2002"#> [27] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/2008"#> [28] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/2011"#> [29] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/2012"#> [30] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/2014"#> [31] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/2015"#> [32] "/home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/2016"

Note that the directory contains other directories named withthe dates of the modeling layers. Now, we explore some of thesedated directories.

# Directory for year 1939list.files(list.dirs(tempora_layers_dir,recursive =FALSE)[1],pattern =".tif$")#>  [1] "bio_01.tif" "bio_02.tif" "bio_03.tif" "bio_04.tif" "bio_05.tif"#>  [6] "bio_06.tif" "bio_07.tif" "bio_08.tif" "bio_09.tif" "bio_10.tif"#> [11] "bio_11.tif" "bio_12.tif" "bio_13.tif" "bio_14.tif" "bio_15.tif"#> [16] "bio_16.tif" "bio_17.tif" "bio_18.tif" "bio_19.tif"
# Directory for year 1972list.files(list.dirs(tempora_layers_dir,recursive =FALSE)[10],pattern =".tif$")#>  [1] "bio_01.tif" "bio_02.tif" "bio_03.tif" "bio_04.tif" "bio_05.tif"#>  [6] "bio_06.tif" "bio_07.tif" "bio_08.tif" "bio_09.tif" "bio_10.tif"#> [11] "bio_11.tif" "bio_12.tif" "bio_13.tif" "bio_14.tif" "bio_15.tif"#> [16] "bio_16.tif" "bio_17.tif" "bio_18.tif" "bio_19.tif"
# Directory for year 2014list.files(list.dirs(tempora_layers_dir,recursive =FALSE)[30],pattern =".tif$")#>  [1] "bio_01.tif" "bio_02.tif" "bio_03.tif" "bio_04.tif" "bio_05.tif"#>  [6] "bio_06.tif" "bio_07.tif" "bio_08.tif" "bio_09.tif" "bio_10.tif"#> [11] "bio_11.tif" "bio_12.tif" "bio_13.tif" "bio_14.tif" "bio_15.tif"#> [16] "bio_16.tif" "bio_17.tif" "bio_18.tif" "bio_19.tif"

Note that all dated directories must have the sameenvironmentalinformation. In this example, weused the bioclimatic layers derived from theCHELSAcrutsdatabase.

Thesp.temporal.modeling object

In the following lines of code, we will use a special function of thetenm R package that will allow us to work withtime-specific data.

data("abronia")tempora_layers_dir<-system.file("extdata/bio",package ="tenm")abt<- tenm::sp_temporal_data(occs = abronia,longitude ="decimalLongitude",latitude ="decimalLatitude",sp_date_var ="year",occ_date_format="y",layers_date_format="y",layers_by_date_dir = tempora_layers_dir,layers_ext="*.tif$")

The functiontenm::sp_temporal_data is parameterizedwith the occurrence dated database. To parameterize the function, weneed to specify the name of the columns that contain the longitude andlatitude data, the column that represents the year of observation, theformat of dates (here years, but see the help of the function for otherdate formats), the layers date format, the directory that contains thetime-specific modeling layers and the raster layer extension.

The objectabt is a special class calledsp.temporal.modeling that deals with time-specificinformation.

In the following line of code, we explore the slots ofabt object.

# See the names of the slotsnames(abt)#> [1] "temporal_df"  "sp_date_var"  "lon_lat_vars" "layers_ext"

Theabt object has four slots: temporal data.frame(“temporal_df”), a character vector indicating the date variable(“sp_date_var”), a character vector showing the names of longitude andlatitude data (“lon_lat_vars”) and another character vector with theextension of the modeling layers.

Now, we explore the temporal_df slot, which is a data.frame with fivecolumns: longitude, latitude, the time variable (here year), the layerdates, and layers path (the path the temporal niche layers arelocated).

# See the temporal data.frametidyr::as_tibble(head(abt$temporal_df))#> # A tibble: 6 × 5#>   decimalLongitude decimalLatitude  year layer_dates layers_path#>              <dbl>           <dbl> <int> <date>      <chr>#> 1            -98.2            20.0  2014 2014-01-01  /home/luis/R/x86_64-pc-lin…#> 2            -98.1            19.9  2014 2014-01-01  /home/luis/R/x86_64-pc-lin…#> 3            -98.1            19.9  2014 2014-01-01  /home/luis/R/x86_64-pc-lin…#> 4            -98.1            19.9  2014 2014-01-01  /home/luis/R/x86_64-pc-lin…#> 5            -98.1            19.8  2014 2014-01-01  /home/luis/R/x86_64-pc-lin…#> 6            -98.2            19.9  2014 2014-01-01  /home/luis/R/x86_64-pc-lin…

Time-specific spatial datathinning

As a first step, we will curate our time-specific database using thefunctiontenm::clean_dup_by_date. This function isparametrized as thetenm::clean_dup function with thedifference that it thins the data considering the time variable (someoccurrences might be spatially duplicated but belong to other dates, soin a time-specific context, they are not duplicates).

# Clean duplicates using a raster maskabtc<- tenm::clean_dup_by_date(this_species = abt,by_mask =TRUE,threshold = terra::res(tenm_mask)[1],raster_mask = tenm_mask[1],n_ngbs =0)# Check number of recordshead(tidyr::as_tibble(abtc$temporal_df))#> # A tibble: 6 × 5#>   decimalLongitude decimalLatitude  year layer_dates layers_path#>              <dbl>           <dbl> <int> <date>      <chr>#> 1            -97.3            18.7  1939 1939-01-01  /home/luis/R/x86_64-pc-lin…#> 2            -97.3            18.7  1940 1940-01-01  /home/luis/R/x86_64-pc-lin…#> 3            -97.0            19.6  1941 1941-01-01  /home/luis/R/x86_64-pc-lin…#> 4            -97.3            18.7  1941 1941-01-01  /home/luis/R/x86_64-pc-lin…#> 5            -97.3            18.7  1950 1950-01-01  /home/luis/R/x86_64-pc-lin…#> 6            -97.1            19.7  1950 1950-01-01  /home/luis/R/x86_64-pc-lin…
nrow(abtc$temporal_df)#> [1] 40

An improvement of this methodology is that we recover a lot ofinformation. From 10 records thinned using the standard data cleaningprocess, now we have 40 records; 30 more observations!!! which willallow us to fit more informative models. Let’s compare occurrences fromthe standard data cleaning process and the time-specific thinningprocess.

colors1<-hcl.colors(length(unique(ab_1$year)))par(mar=c(4,4,2,2),mfrow=c(1,2))plot(ab_1$decimalLongitude, ab_1$decimalLatitude,col=colors1,pch=19,cex=0.75,xlab="Longitude",ylab="Latitude",xlim=c(-98.35,-96.7))legend("bottomleft",legend =sort(unique(ab_1$year))[1:10],cex=0.85,pt.cex =1,bty ="n",pch=19,col =colors1[1:10])colors2<-hcl.colors(length(unique(abtc$temporal_df$year)))plot(abtc$temporal_df$decimalLongitude, abtc$temporal_df$decimalLatitude,col=colors2,pch=19,cex=0.75,xlab="Longitude",ylab="Latitude",xlim=c(-98.35,-96.7))legend("bottomleft",legend =sort(unique(abtc$temporal_df$year))[1:16],cex=0.85,pt.cex =1,bty ="n",pch=19,col =colors2[1:16])legend("bottomright",legend =sort(unique(abronia$year))[17:length(unique(abtc$temporal_df$year))],cex=0.85,pt.cex =1,bty ="n",pch=19,col =colors2[17:length(unique(abtc$temporal_df$year))])
Fig. 2. Comparison of the spatial distribution of occurrence records for the standard thinning processs and the time-specific thinning process. Left panel shows the records after the standard thinning process. Right panel shows the spatial distribution of the records after the time-specific thinning process; note that some records overlap but are from different years.

Fig. 2. Comparison of the spatial distribution of occurrence records forthe standard thinning processs and the time-specific thinning process.Left panel shows the records after the standard thinning process. Rightpanel shows the spatial distribution of the records after thetime-specific thinning process; note that some records overlap but arefrom different years.

Time-specificenvironmental data extraction

After the spatial thinning process, we need to extract environmentalinformation from our occurrence points. Thetenm packagedoes this using the functiontenm::ex_by_date. Thisfunction can be run in parallel by evoking functions of thefuture package. To parametrize the function, we need tospecify the “sp.temporal.modeling” object (obtained using the functiontenm::sp_temporal_data or the one fromtenm::clean_dup_by_date) and the proportion of occurrencesto be used as the training dataset. Thetenm package uses arandom partition to divide the database into train and testdatasets.

future::plan("multisession",workers=2)abex<- tenm::ex_by_date(this_species = abtc,train_prop=0.7)future::plan("sequential")

Now, we explore the slot “temporal_df”.

head(abex$temporal_df)#> # A tibble: 6 × 26#>   decimalLongitude decimalLatitude  year layer_dates layers_path   cell_ids_year#>              <dbl>           <dbl> <int> <date>      <chr>                 <dbl>#> 1            -97.3            18.7  1939 1939-01-01  /home/luis/R…           272#> 2            -97.3            18.7  1940 1940-01-01  /home/luis/R…           272#> 3            -97.0            19.6  1941 1941-01-01  /home/luis/R…           173#> 4            -97.3            18.7  1941 1941-01-01  /home/luis/R…           271#> 5            -97.3            18.7  1950 1950-01-01  /home/luis/R…           272#> 6            -97.1            19.7  1950 1950-01-01  /home/luis/R…           173#> # ℹ 20 more variables: bio_01 <int>, bio_02 <int>, bio_03 <int>, bio_04 <int>,#> #   bio_05 <int>, bio_06 <int>, bio_07 <int>, bio_08 <int>, bio_09 <int>,#> #   bio_10 <int>, bio_11 <int>, bio_12 <int>, bio_13 <int>, bio_14 <int>,#> #   bio_15 <int>, bio_16 <int>, bio_17 <int>, bio_18 <int>, bio_19 <int>,#> #   trian_test <chr>

It has 40 rows and columns with the time-specific environmentalvalues and an additional column indicating if the observation will beused as train or test.

Time-specific backgroundgeneration

Thetenm package uses environmental background tocompute the ROC and partial ROC test and estimate the prevalence of thespecies in the environmental space (proportion of environmental pointsinside the niche model). We will generate 10,000 environmentalbackground points using as calibration area and a neighborhood of 10pixels around each occurrence point (buffer_ngbs parameter).

future::plan("multisession",workers=2)abbg<- tenm::bg_by_date(this_species = abex,buffer_ngbs=10,n_bg=10000)future::plan("sequential")head(abbg$env_bg)#>                                                              ID_YEAR#> 1 /home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1939#> 2 /home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1939#> 3 /home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1939#> 4 /home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1939#> 5 /home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1939#> 6 /home/luis/R/x86_64-pc-linux-gnu-library/4.4/tenm/extdata/bio/1939#>   decimalLongitude decimalLatitude bio_01 bio_02 bio_03 bio_04 bio_05 bio_06#> 1        -97.75000        18.91667    155     92     57   2177    223     62#> 2        -98.25000        18.75000    192    100     60   1990    264     97#> 3        -98.58333        17.75000    210    104     62   1574    286    118#> 4        -98.41667        19.41667    134     99     59   2204    205     38#> 5        -96.58333        17.91667    204     80     53   2221    271    121#> 6        -98.75000        18.41667    234    105     61   1801    311    139#>   bio_07 bio_08 bio_09 bio_10 bio_11 bio_12 bio_13 bio_14 bio_15 bio_16 bio_17#> 1    161    175    136    176    124    550    133      1      1    279      9#> 2    167    210    177    211    163    690    187      0      1    408      7#> 3    168    223    192    224    187    616    177      1      1    375      5#> 4    167    156    103    156    103    613    119      0      1    326      8#> 5    151    224    199    225    173   2520    619      4      1   1167     39#> 6    172    248    214    250    208    611    158      0      1    380      3#>   bio_18 bio_19#> 1    259     14#> 2    338      8#> 3    296      5#> 4    277      8#> 5    972    583#> 6    269      4

The number of background points for each year is proportionalto the number of occurrences for each year of observation.

Exportingtime-specific information as Samples With Data format

Although the package uses minimum volume ellipsoids to model theniche, it has a function to export the time-specific data to SamplesWith Data format table that allows users to fit other algorithms such asMaxEnt. Let’s see how it works.

# SWD table for occurrence recordsocc_swd<-tdf2swd(this_species=abex,sp_name="abro_gram")# SWD table for background databg_swd<-tdf2swd(this_species=abbg)head(tidyr::as_tibble(occ_swd))#> # A tibble: 6 × 23#>   sp_name   decimalLongitude decimalLatitude  year bio_01 bio_02 bio_03 bio_04#>   <chr>                <dbl>           <dbl> <int>  <int>  <int>  <int>  <int>#> 1 abro_gram            -97.3            18.7  1939    149     84     55   2252#> 2 abro_gram            -97.3            18.7  1940    154     87     49   2575#> 3 abro_gram            -97.0            19.6  1941    114     63     44   2693#> 4 abro_gram            -97.3            18.7  1941    139     82     50   2394#> 5 abro_gram            -97.3            18.7  1950    155     94     54   2079#> 6 abro_gram            -97.1            19.7  1950    115     79     51   2278#> # ℹ 15 more variables: bio_05 <int>, bio_06 <int>, bio_07 <int>, bio_08 <int>,#> #   bio_09 <int>, bio_10 <int>, bio_11 <int>, bio_12 <int>, bio_13 <int>,#> #   bio_14 <int>, bio_15 <int>, bio_16 <int>, bio_17 <int>, bio_18 <int>,#> #   bio_19 <int>
head(tidyr::as_tibble(bg_swd))#> # A tibble: 6 × 23#>   sp_name    decimalLongitude decimalLatitude  year bio_01 bio_02 bio_03 bio_04#>   <chr>                 <dbl>           <dbl> <dbl>  <int>  <int>  <int>  <int>#> 1 background            -97.7            18.9  1939    155     92     57   2177#> 2 background            -98.2            18.8  1939    192    100     60   1990#> 3 background            -98.6            17.8  1939    210    104     62   1574#> 4 background            -98.4            19.4  1939    134     99     59   2204#> 5 background            -96.6            17.9  1939    204     80     53   2221#> 6 background            -98.7            18.4  1939    234    105     61   1801#> # ℹ 15 more variables: bio_05 <int>, bio_06 <int>, bio_07 <int>, bio_08 <int>,#> #   bio_09 <int>, bio_10 <int>, bio_11 <int>, bio_12 <int>, bio_13 <int>,#> #   bio_14 <int>, bio_15 <int>, bio_16 <int>, bio_17 <int>, bio_18 <int>,#> #   bio_19 <int>

Time-specificmodel calibration and selection

As a final step, we will calibrate time-specific niche models usingminimum volume ellipsoids. To achieve this, we first select theenvironmental variables using the functiontenm::correlation_finder. This function filters variablesaccording to a correlation threshold, which is important to avoid issuesrelated to collinearity.

varcorrs<- tenm::correlation_finder(environmental_data =                                       abex$env_data[,-ncol(abex$env_data)],method ="spearman",threshold =0.8,verbose =FALSE)#> Warning in stats::cor(environmental_data, method = method): La desviación#> estándar es cero
# Selected variablesvars2fit<- varcorrs$descriptorsprint(vars2fit)#> [1] "bio_01" "bio_02" "bio_03" "bio_04" "bio_07" "bio_12" "bio_14" "bio_15"#> [9] "bio_17"

Now, we use the functiontenm::tenm_selection tocalibrate the time-specific niche models. This function uses thebackground object (here, theabbg object) as input. Toparametrize the function, we need to specify the omission rate criteriato be used to select the models, the proportion of points to be includedin the ellipsoid model (ellipsoid_level parameter), the namesof the modeling layers (vars2fit parameter), a numeric vectorindicating the number of dimensions used to build ellipsoid models(vars2fit parameter) a logical argument that determines whetherto use the partial ROC test or not, the random percent of data to beused for the bootstrap of the partial ROC test (RandomPercentparameter), the number of iterations of the partial ROC test(NoOfIteration parameter), a logical argument to specifywhether to run the calibration process in parallel and the number ofcores used in the parallel process (parallel parameter).

mod_sel<- tenm::tenm_selection(this_species = abbg,omr_criteria =0.1,ellipsoid_level=0.975,vars2fit = vars2fit,nvars_to_fit=c(2,3,4,5,6,7),proc = T,RandomPercent =50,NoOfIteration=1000,parallel=TRUE,n_cores=4)#> -------------------------------------------------------------------#>      **** Starting model selection process ****#> -------------------------------------------------------------------#>#> A total number of 36 models will be created for combinations of 9 variables taken by 2#>#> A total number of 84 models will be created for combinations of 9 variables taken by 3#>#> A total number of 126 models will be created for combinations of 9 variables taken by 4#>#> A total number of 126 models will be created for combinations of 9 variables taken by 5#>#> A total number of 84 models will be created for combinations of 9 variables taken by 6#>#> A total number of 36 models will be created for combinations of 9 variables taken by 7#>#> -------------------------------------------------------------------#>   **A total number of 492 models will be tested **#>#> -------------------------------------------------------------------#> Doing calibration from model  1 to  100 in process  1#>#> Doing calibration from model  101 to  200 in process  2#>#> Doing calibration from model  201 to  300 in process  3#>#> Doing calibration from model  301 to  400 in process  4#>#> Doing calibration from model  401 to  492 in process  5#>#> Finishing calibration of models  1 to  100#>#> Finishing calibration of models  101 to  200#>#> Finishing calibration of models  201 to  300#>#> Finishing calibration of models  301 to  400#>#> Finishing calibration of models  401 to  492#>#> Finishing...#>#> -------------------------------------------------------------------#>   244 models passed omr_criteria for train data#>   27 models passed omr_criteria for test data#>   27 models passed omr_criteria for train and test data

We fitted 492 models, from which 27 passed our selection criteria.Let’s explore themod_sel object.

names(mod_sel)#> [1] "temporal_df"  "sp_date_var"  "lon_lat_vars" "layers_ext"   "env_bg"#> [6] "mods_table"

It has five slots. We can obtain the table of results of theselection process by calling themods_table slot.

head(mod_sel$mods_table,27)#>                    fitted_vars nvars om_rate_train non_pred_train_ids#> 1  bio_01,bio_02,bio_04,bio_07     4       0.06250              18,31#> 2  bio_01,bio_02,bio_03,bio_04     4       0.06250              18,31#> 3  bio_01,bio_03,bio_04,bio_07     4       0.06250              18,31#> 4  bio_01,bio_04,bio_07,bio_12     4       0.09375           21,28,31#> 5  bio_01,bio_02,bio_03,bio_07     4       0.03125                 18#> 6         bio_01,bio_04,bio_07     3       0.06250              18,31#> 7  bio_01,bio_03,bio_04,bio_12     4       0.09375           18,21,28#> 8         bio_01,bio_03,bio_04     3       0.06250               3,18#> 9                bio_01,bio_04     2       0.03125                 18#> 10        bio_01,bio_02,bio_04     3       0.09375            3,18,31#> 11               bio_01,bio_07     2       0.06250              18,31#> 12               bio_01,bio_03     2       0.06250               3,18#> 13               bio_01,bio_02     2       0.09375            3,18,31#> 14        bio_01,bio_03,bio_12     3       0.06250               3,18#> 15 bio_02,bio_04,bio_07,bio_12     4       0.06250              21,28#> 16 bio_02,bio_03,bio_07,bio_12     4       0.06250              21,28#> 17 bio_02,bio_03,bio_04,bio_12     4       0.06250              21,28#> 18        bio_01,bio_07,bio_12     3       0.06250              18,31#> 19 bio_02,bio_03,bio_04,bio_07     4       0.03125                  3#> 20               bio_04,bio_07     2       0.03125                  3#> 21        bio_04,bio_07,bio_12     3       0.06250              21,28#> 22               bio_04,bio_12     2       0.06250              10,21#> 23               bio_03,bio_04     2       0.03125                  3#> 24        bio_02,bio_07,bio_12     3       0.09375            3,21,28#> 25        bio_02,bio_03,bio_12     3       0.09375            3,21,28#> 26        bio_03,bio_07,bio_12     3       0.09375            3,21,28#> 27               bio_07,bio_12     2       0.03125                 28#>    om_rate_test non_pred_test_ids bg_prevalence pval_bin pval_proc#> 1             0                       0.4706024        0         0#> 2             0                       0.4554527        0         0#> 3             0                       0.4639894        0         0#> 4             0                       0.4627871        0         0#> 5             0                       0.4088013        0         0#> 6             0                       0.4648311        0         0#> 7             0                       0.4625466        0         0#> 8             0                       0.4655525        0         0#> 9             0                       0.4835878        0         0#> 10            0                       0.4768546        0         0#> 11            0                       0.5001804        0         0#> 12            0                       0.4995792        0         0#> 13            0                       0.4823855        0         0#> 14            0                       0.4844295        0         0#> 15            0                       0.6570879        0         0#> 16            0                       0.5706385        0         0#> 17            0                       0.6412168        0         0#> 18            0                       0.4962126        0         0#> 19            0                       0.6100757        0         0#> 20            0                       0.7537574        0         0#> 21            0                       0.6847421        0         0#> 22            0                       0.7220151        0         0#> 23            0                       0.7382470        0         0#> 24            0                       0.6783696        0         0#> 25            0                       0.6816160        0         0#> 26            0                       0.7000120        0         0#> 27            0                       0.7766021        0         0#>    env_bg_paucratio env_bg_auc mean_omr_train_test rank_by_omr_train_test#> 1          1.520879  0.7985825            0.031250                     11#> 2          1.505433  0.7996963            0.031250                      7#> 3          1.500235  0.7974812            0.031250                      8#> 4          1.467522  0.7828762            0.046875                     22#> 5          1.465208  0.7519788            0.015625                      1#> 6          1.462961  0.7858312            0.031250                      9#> 7          1.448599  0.7549675            0.046875                     21#> 8          1.431383  0.7479400            0.031250                     10#> 9          1.429927  0.7371300            0.015625                      2#> 10         1.424194  0.7454525            0.046875                     23#> 11         1.409348  0.7345675            0.031250                     15#> 12         1.409145  0.7019625            0.031250                     14#> 13         1.398036  0.7285350            0.046875                     24#> 14         1.382147  0.6807450            0.031250                     12#> 15         1.379969  0.7115000            0.031250                     18#> 16         1.374939  0.6537675            0.031250                     16#> 17         1.373252  0.7036713            0.031250                     17#> 18         1.365017  0.7032725            0.031250                     13#> 19         1.329613  0.6943437            0.015625                      3#> 20         1.307749  0.6769513            0.015625                      5#> 21         1.303573  0.6712913            0.031250                     19#> 22         1.288655  0.6388300            0.031250                     20#> 23         1.267623  0.6472100            0.015625                      4#> 24         1.261588  0.6146950            0.046875                     25#> 25         1.253496  0.5970800            0.046875                     26#> 26         1.240056  0.5891425            0.046875                     27#> 27         1.193064  0.5648688            0.015625                      6#>    rank_omr_aucratio#> 1                  1#> 2                  2#> 3                  3#> 4                  4#> 5                  5#> 6                  6#> 7                  7#> 8                  8#> 9                  9#> 10                10#> 11                11#> 12                12#> 13                13#> 14                14#> 15                15#> 16                16#> 17                17#> 18                18#> 19                19#> 20                20#> 21                21#> 22                22#> 23                23#> 24                24#> 25                25#> 26                26#> 27                27

Projecting time-specificniche models

To project the models, we use thepredict method. Here,we will project one of the selected models using the environmentallayers of 2016. Also, we project it using layers from a period thatcomprehends 1970-2000.

env_layers_2016<-list.dirs(tempora_layers_dir,recursive =FALSE)[32]suit_2016<-predict(mod_sel,model_variables =c("bio_01","bio_03","bio_12"),layers_path =env_layers_2016 ,layers_ext =".tif$")#>   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
Fig. 3. A selected niche model projected using environmental layers from 2016.

Fig. 3. A selected niche model projected using environmental layers from2016.

Now for the period that comprehends 1970-2000.

layers_70_00_dir<-system.file("extdata/bio_1970_2000",package ="tenm")suit_1970_2000<-predict(mod_sel,model_variables =c("bio_01","bio_03","bio_12"),layers_path = layers_70_00_dir,layers_ext =".tif$")#>   |                                                                              |                                                                      |   0%  |                                                                              |======================================================================| 100%
Fig. 4. A selected niche model projected using environmental layers from 1970-2000.

Fig. 4. A selected niche model projected using environmental layers from1970-2000.

Lets see the predictions in geographic space

par(mfrow=c(1,2),mar=c(4,4,2,2))terra::plot(suit_2016,main="Prediction for 2016")terra::plot(suit_1970_2000,main="Prediction for 1970-2000")
Fig. 5. Geographic projection of a selected model. Left panel, the projection using environmental layers from 2016. Right panel, the projection using environmental layers from 1970-2000

Fig. 5. Geographic projection of a selected model. Left panel, theprojection using environmental layers from 2016. Right panel, theprojection using environmental layers from 1970-2000

Comparingtime-specific niche model vs. standard niche model

The following lines of code show the differences of a time-specificniche model and a standard niche model.

layers_70_00_dir<-system.file("extdata/bio_1970_2000",package ="tenm")layers_70_00_path<-list.files(layers_70_00_dir,pattern =".tif$",full.names =TRUE)# Extract environmental informationelayers_70_00<- terra::rast(layers_70_00_path)e_trad<- terra::extract(elayers_70_00,                         ab_1[,c("decimalLongitude","decimalLatitude")])rgl::view3d(theta =0,phi =-60,fov=120,zoom =0.7)tenm::plot_ellipsoid(x = e_trad$bio_01,y=e_trad$bio_03,z=e_trad$bio_12,col ="#1B9E77",xlab ="Bio 1",ylab ="Bio 3",zlab ="Bio 12",)tenm::plot_ellipsoid(x = abbg$temporal_df$bio_01,y = abbg$temporal_df$bio_03,z = abbg$temporal_df$bio_12,col ="#E7298A",add =TRUE)
Fig. 6. Time-specific niche model vs. standard niche model. Pink ellipsoid represents the time-specific niche model. Green ellipsoid represents a ellipsoid model fitted using the standard approach.

Fig. 6. Time-specific niche model vs. standard niche model. Pinkellipsoid represents the time-specific niche model. Green ellipsoidrepresents a ellipsoid model fitted using the standard approach.

Note that both ellipsoids differ in size and shape. In standardapproach (green ellipsoid), we can see an sub-estimation of theenvironmental values where the intrinsic growth rate might bepositive.

Acknowledgments

CONACYT Ciencia de Frontera CF-2023-I-1156. Laboratorio NacionalConahcyt de Biología del Cambio Climático, México. To PAPIIT-UNAMIA202824 and PAPIIT-UNAM IA203922. RGCD thanks the Universidad NacionalAutónoma de México (Dirección General de Asuntos del Personal Académico,DGAPA-UNAM, México) for her postdoctoral scholarship.


[8]ページ先頭

©2009-2025 Movatter.jp