Movatterモバイル変換


[0]ホーム

URL:


unfold: Mapping Hidden Geometry into Future Sequences

A variational mapping approach that reveals and expands future temporal dynamics from folded high-dimensional geometric distance spaces, unfold turns a set of time series into a 4D block of pairwise distances between reframed windows, learns a variational mapper that maps those distances to the next reframed window, and produces horizon-wise predictive functions for each input series. In short: it unfolds the future path of each series from a folded geometric distance representation.

Version:1.0.0
Depends:R (≥ 4.1.0)
Imports:torch (≥ 0.11.0),purrr (≥ 1.0.1),imputeTS (≥ 3.3),lubridate (≥ 1.9.2),ggplot2 (≥ 3.5.1),scales (≥ 1.3.0),abind (≥ 1.4-5),coro (≥ 1.1.0)
Suggests:knitr,testthat (≥ 3.0.0)
Published:2025-08-26
DOI:10.32614/CRAN.package.unfold
Author:Giancarlo Vercellino [aut, cre, cph]
Maintainer:Giancarlo Vercellino <giancarlo.vercellino at gmail.com>
License:GPL-3
URL:https://rpubs.com/giancarlo_vercellino/unfold
NeedsCompilation:no
Materials:NEWS
CRAN checks:unfold results

Documentation:

Reference manual:unfold.html ,unfold.pdf

Downloads:

Package source: unfold_1.0.0.tar.gz
Windows binaries: r-devel:unfold_1.0.0.zip, r-release:unfold_1.0.0.zip, r-oldrel:unfold_1.0.0.zip
macOS binaries: r-release (arm64):unfold_1.0.0.tgz, r-oldrel (arm64):unfold_1.0.0.tgz, r-release (x86_64):unfold_1.0.0.tgz, r-oldrel (x86_64):unfold_1.0.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=unfoldto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp