Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:A Zero-Inflated Beta Random Effect Model
Version:1.0.2
Date:2023-10-16
Description:A two-part zero-inflated Beta regression model with random effects (ZIBR) for testing the association between microbial abundance and clinical covariates for longitudinal microbiome data. Eric Z. Chen and Hongzhe Li (2016) <doi:10.1093/bioinformatics/btw308>.
License:MIT + file LICENSE
LazyData:TRUE
RoxygenNote:7.2.3
Encoding:UTF-8
Suggests:betareg, dplyr, lme4 (≥ 1.1-34), nlme, knitr, rmarkdown,testthat (≥ 3.0.0)
Config/testthat/edition:3
Depends:R (≥ 2.10), statmod
VignetteBuilder:knitr
URL:https://github.com/PennChopMicrobiomeProgram/ZIBR
BugReports:https://github.com/PennChopMicrobiomeProgram/ZIBR/issues
NeedsCompilation:no
Packaged:2023-10-16 19:47:32 UTC; ctbus
Author:Eric Zhang Chen [aut, cph], Charlie Bushman [cre]
Maintainer:Charlie Bushman <ctbushman@gmail.com>
Repository:CRAN
Date/Publication:2023-10-17 09:50:08 UTC

Fit beta random effect

Description

Fit beta random effect

Usage

fit_beta_random_effect(  Z = Z,  Y = Y,  subject.ind = subject.ind,  time.ind = time.ind,  quad.n = 30,  verbose = FALSE)

Arguments

Z

FILL

Y

FILL

subject.ind

the subject index

time.ind

the time index

quad.n

number of points in gaussian quadrature

verbose

a boolean to enable more output

Value

a named list


Fit logisitic random effect

Description

Fit logisitic random effect

Usage

fit_logistic_random_effect(  X = X,  Y = Y,  subject.ind = subject.ind,  time.ind = time.ind,  quad.n = 30,  verbose = FALSE)

Arguments

X

FILL

Y

FILL

subject.ind

the subject index

time.ind

the time index

quad.n

number of points in gaussian quadrature

verbose

a boolean to enable more output

Value

a named list


Fit zero inflated beta random effect

Description

Fit zero inflated beta random effect

Usage

fit_zero_inflated_beta_random_effect(  X = X,  Z = Z,  Y = Y,  subject_ind = subject_ind,  time_ind = time_ind,  component_wise_test = TRUE,  joint_test = TRUE,  quad_n = 30,  verbose = FALSE)

Arguments

X

FILL

Z

FILL

Y

FILL

subject_ind

the subject index

time_ind

the time index

component_wise_test

boolean to run component-wise test

joint_test

boolean to run joint test

quad_n

number of points in gaussian quadrature

verbose

a boolean to enable more output

Value

a named list


Longitudinal human microbiome data

Description

A dataset containing the bacterial abundance and clinical information froma longitudinal human microbiome study

Usage

ibd

Format

A data frame with 236 rows and 5 variables:

Sample

Sample IDs

Subject

Subject IDs

Time

Time points

Treatment

Treatment, 0 for antiTNF, 1 for EEN

Abundance

Abundance for Eubacterium

...

References

Lewis and Chen et al. (2016) Cell Host & Microbe 18 (4), 489-500


Simulate beta data

Description

Simulate beta data

Usage

simulate_beta_random_effect_data(  subject_n = 50,  time_n = 5,  v = 2,  beta = as.matrix(c(-0.5, -0.5, 0.5)),  Z = NA,  s2 = 1,  sim_seed = 100)

Arguments

subject_n

the number of subjects

time_n

the number of time points

v

FILL

beta

FILL

Z

FILL

s2

FILL

sim_seed

the random seed with which to simulate the data

Value

a named list


Simulate logistic data

Description

Simulate logistic data

Usage

simulate_logistic_data(  subject_n = 50,  time_n = 5,  alpha = as.matrix(c(0, 0.5, -1)),  s1 = 0.5,  sim_seed = 100)

Arguments

subject_n

the number of subjects

time_n

the number of time points

alpha

FILL

s1

FILL

sim_seed

the random seed with which to simulate the data

Value

a named list


Simulate data according to zero-inflated beta random effects model

Description

Simulate data according to zero-inflated beta random effects model

Usage

simulate_zero_inflated_beta_random_effect_data(  subject_n = 50,  time_n = 5,  v = 2,  alpha = as.matrix(c(0, 0.5, -1)),  beta = as.matrix(c(-0.5, -0.5, 0.5)),  X = NA,  Z = NA,  s1 = 0.2,  s2 = 0.2,  sim_seed = 100)

Arguments

subject_n

number of subjects

time_n

number of time points for each subject

v

the dispersion parameter in beta component

alpha

the coefficients in logistic component

beta

the coefficients in beta component

X

the covariates in logistic component

Z

the covariates in beta component

s1

the stardard deviation of random effect in logistic component

s2

the stardard deviation of random effect in beta component

sim_seed

the random seed

Value

a named list

Examples

simulate_zero_inflated_beta_random_effect_data(  subject_n = 100, time_n = 5,  X = as.matrix(c(rep(0, 50 * 5), rep(1, 50 * 5))),  alpha = as.matrix(c(-0.5, 1)),  beta = as.matrix(c(-0.5, 0.5)),  s1 = 1, s2 = 0.8,  v = 5,  sim_seed = 100)

Fit zero-inflated beta regression with random effects

Description

Fit zero-inflated beta regression with random effects

Usage

zibr(  logistic_cov,  beta_cov,  Y,  subject_ind,  time_ind,  component_wise_test = TRUE,  quad_n = 30,  verbose = FALSE)

Arguments

logistic_cov

the covariates in logistic component

beta_cov

the covariates in beta component

Y

the response variable in the regression model

subject_ind

the variable for subject IDs

time_ind

the variable for time points

component_wise_test

whether to perform component wise test.If true, ZIBR will calculate p-values for logistic and beta component respectively.

quad_n

Gaussian quadrature points

verbose

print the fitting process

Value

a named list

Examples

## simulate some datasim <- simulate_zero_inflated_beta_random_effect_data(  subject_n = 100, time_n = 5,  X = as.matrix(c(rep(0, 50 * 5), rep(1, 50 * 5))),  Z = as.matrix(c(rep(0, 50 * 5), rep(1, 50 * 5))),  alpha = as.matrix(c(-0.5, 1)),  beta = as.matrix(c(-0.5, 0.5)),  s1 = 1, s2 = 0.8,  v = 5,  sim_seed = 100)## run zibr on the simulated datazibr_fit <- zibr(  logistic_cov = sim$X, beta_cov = sim$Z, Y = sim$Y,  subject_ind = sim$subject_ind, time_ind = sim$time_ind)zibr_fit

[8]ページ先頭

©2009-2025 Movatter.jp