Movatterモバイル変換


[0]ホーム

URL:


BioM2: Biologically Explainable Machine Learning Framework

Biologically Explainable Machine Learning Framework for Phenotype Prediction using omics data described in Chen and Schwarz (2017) <doi:10.48550/arXiv.1712.00336>.Identifying reproducible and interpretable biological patterns from high-dimensional omics data is a critical factor in understanding the risk mechanism of complex disease. As such, explainable machine learning can offer biological insight in addition to personalized risk scoring.In this process, a feature space of biological pathways will be generated, and the feature space can also be subsequently analyzed using WGCNA (Described in Horvath and Zhang (2005) <doi:10.2202/1544-6115.1128> and Langfelder and Horvath (2008) <doi:10.1186/1471-2105-9-559> ) methods.

Version:1.1.3
Depends:R (≥ 4.1.0)
Imports:WGCNA,mlr3,CMplot,ggsci,ROCR,caret,ggplot2,ggpubr,viridis,ggthemes,ggstatsplot,htmlwidgets,mlr3verse, parallel,uwot,webshot,wordcloud2,ggforce,igraph,ggnetwork
Published:2025-07-17
DOI:10.32614/CRAN.package.BioM2
Author:Shunjie Zhang [aut, cre], Junfang Chen [aut]
Maintainer:Shunjie Zhang <zhang.shunjie at qq.com>
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:BioM2 results

Documentation:

Reference manual:BioM2.html ,BioM2.pdf

Downloads:

Package source: BioM2_1.1.3.tar.gz
Windows binaries: r-devel:BioM2_1.1.3.zip, r-release:BioM2_1.1.3.zip, r-oldrel:BioM2_1.1.3.zip
macOS binaries: r-release (arm64):BioM2_1.1.3.tgz, r-oldrel (arm64):BioM2_1.1.3.tgz, r-release (x86_64):BioM2_1.1.3.tgz, r-oldrel (x86_64):BioM2_1.1.3.tgz
Old sources: BioM2 archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BioM2to link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp