Movatterモバイル変換


[0]ホーム

URL:


RMTL: Regularized Multi-Task Learning

Efficient solvers for 10 regularized multi-task learning algorithms applicable for regression, classification, joint feature selection, task clustering, low-rank learning, sparse learning and network incorporation. Based on the accelerated gradient descent method, the algorithms feature a state-of-art computational complexity O(1/k^2). Sparse model structure is induced by the solving the proximal operator. The detail of the package is described in the paper of Han Cao and Emanuel Schwarz (2018) <doi:10.1093/bioinformatics/bty831>.

Version:0.9.9
Depends:R (≥ 3.5.0)
Imports:MASS (≥ 7.3-50),psych (≥ 1.8.4),corpcor (≥ 1.6.9),doParallel (≥ 1.0.14),foreach (≥ 1.4.4)
Suggests:knitr,rmarkdown
Published:2022-05-02
DOI:10.32614/CRAN.package.RMTL
Author:Han Cao [cre, aut, cph], Emanuel Schwarz [aut]
Maintainer:Han Cao <hank9cao at gmail.com>
BugReports:https://github.com/transbioZI/RMTL/issues/
License:GPL-3
URL:https://github.com/transbioZI/RMTL/
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:RMTL results

Documentation:

Reference manual:RMTL.html ,RMTL.pdf
Vignettes:An Tutorial for Regularized Multi-task Learning using the package RMTL (source,R code)

Downloads:

Package source: RMTL_0.9.9.tar.gz
Windows binaries: r-devel:RMTL_0.9.9.zip, r-release:RMTL_0.9.9.zip, r-oldrel:RMTL_0.9.9.zip
macOS binaries: r-release (arm64):RMTL_0.9.9.tgz, r-oldrel (arm64):RMTL_0.9.9.tgz, r-release (x86_64):RMTL_0.9.9.tgz, r-oldrel (x86_64):RMTL_0.9.9.tgz
Old sources: RMTL archive

Reverse dependencies:

Reverse suggests:joinet

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=RMTLto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp