Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) <doi:10.48550/arXiv.2501.13173>.
| Version: | 1.1.1 |
| Depends: | R (≥ 4.1.0) |
| Imports: | gsl,progress,rlang, utils, methods,torch |
| Suggests: | testthat (≥ 3.0.0),shrinkTVP,plotly |
| Published: | 2025-10-01 |
| DOI: | 10.32614/CRAN.package.shrinkGPR |
| Author: | Peter Knaus |
| Maintainer: | Peter Knaus <peter.knaus at wu.ac.at> |
| License: | GPL-2 |GPL-3 [expanded from: GPL (≥ 2)] |
| NeedsCompilation: | no |
| SystemRequirements: | torch backend, for installation guide seehttps://cran.r-project.org/web/packages/torch/vignettes/installation.html |
| Materials: | NEWS |
| CRAN checks: | shrinkGPR results |
| Reference manual: | shrinkGPR.html ,shrinkGPR.pdf |
| Package source: | shrinkGPR_1.1.1.tar.gz |
| Windows binaries: | r-devel:shrinkGPR_1.1.1.zip, r-release:shrinkGPR_1.1.1.zip, r-oldrel:shrinkGPR_1.1.1.zip |
| macOS binaries: | r-release (arm64):shrinkGPR_1.1.1.tgz, r-oldrel (arm64):shrinkGPR_1.1.1.tgz, r-release (x86_64):shrinkGPR_1.1.1.tgz, r-oldrel (x86_64):shrinkGPR_1.1.1.tgz |
| Old sources: | shrinkGPR archive |
Please use the canonical formhttps://CRAN.R-project.org/package=shrinkGPRto link to this page.