Movatterモバイル変換


[0]ホーム

URL:


shrinkGPR: Scalable Gaussian Process Regression with Hierarchical ShrinkagePriors

Efficient variational inference methods for fully Bayesian Gaussian Process Regression (GPR) models with hierarchical shrinkage priors, including the triple gamma prior for effective variable selection and covariance shrinkage in high-dimensional settings. The package leverages normalizing flows to approximate complex posterior distributions. For details on implementation, see Knaus (2025) <doi:10.48550/arXiv.2501.13173>.

Version:1.1.1
Depends:R (≥ 4.1.0)
Imports:gsl,progress,rlang, utils, methods,torch
Suggests:testthat (≥ 3.0.0),shrinkTVP,plotly
Published:2025-10-01
DOI:10.32614/CRAN.package.shrinkGPR
Author:Peter KnausORCID iD [aut, cre]
Maintainer:Peter Knaus <peter.knaus at wu.ac.at>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
SystemRequirements:torch backend, for installation guide seehttps://cran.r-project.org/web/packages/torch/vignettes/installation.html
Materials:NEWS
CRAN checks:shrinkGPR results

Documentation:

Reference manual:shrinkGPR.html ,shrinkGPR.pdf

Downloads:

Package source: shrinkGPR_1.1.1.tar.gz
Windows binaries: r-devel:shrinkGPR_1.1.1.zip, r-release:shrinkGPR_1.1.1.zip, r-oldrel:shrinkGPR_1.1.1.zip
macOS binaries: r-release (arm64):shrinkGPR_1.1.1.tgz, r-oldrel (arm64):shrinkGPR_1.1.1.tgz, r-release (x86_64):shrinkGPR_1.1.1.tgz, r-oldrel (x86_64):shrinkGPR_1.1.1.tgz
Old sources: shrinkGPR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=shrinkGPRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp