Movatterモバイル変換


[0]ホーム

URL:


filtro: Feature Selection Using Supervised Filter-Based Methods

Tidy tools to apply filter-based supervised feature selection methods. These methods score and rank feature relevance using metrics such as p-values, correlation, and importance scores (Kuhn and Johnson (2019) <doi:10.1201/9781315108230>).

Version:0.2.0
Depends:R (≥ 4.1)
Imports:cli,desirability2 (≥ 0.1.0),dplyr,generics,pROC,purrr,rlang (≥ 1.1.0),S7, stats,tibble,tidyr,vctrs
Suggests:aorsf,FSelectorRcpp,knitr,modeldata,partykit,quarto,ranger,rmarkdown,testthat (≥ 3.0.0),titanic
Published:2025-08-26
DOI:10.32614/CRAN.package.filtro
Author:Frances Lin [aut, cre], Max KuhnORCID iD [aut], Emil Hvitfeldt [aut], Posit Software, PBCROR ID [cph, fnd]
Maintainer:Frances Lin <franceslinyc at gmail.com>
BugReports:https://github.com/tidymodels/filtro/issues
License:MIT + fileLICENSE
URL:https://github.com/tidymodels/filtro,https://filtro.tidymodels.org/
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:filtro results

Documentation:

Reference manual:filtro.html ,filtro.pdf
Vignettes:Introduction to filtro (source,R code)
Scoring via random forests (source,R code)

Downloads:

Package source: filtro_0.2.0.tar.gz
Windows binaries: r-devel:filtro_0.2.0.zip, r-release:filtro_0.2.0.zip, r-oldrel:filtro_0.2.0.zip
macOS binaries: r-release (arm64):filtro_0.2.0.tgz, r-oldrel (arm64):filtro_0.2.0.tgz, r-release (x86_64):filtro_0.2.0.tgz, r-oldrel (x86_64):filtro_0.2.0.tgz
Old sources: filtro archive

Reverse dependencies:

Reverse imports:important

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=filtroto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp