Movatterモバイル変換


[0]ホーム

URL:


polle: Policy Learning

Package for learning and evaluating (subgroup) policies via doubly robust loss functions. Policy learning methods include doubly robust blip/conditional average treatment effect learning and sequential policy tree learning. Methods for (subgroup) policy evaluation include doubly robust cross-fitting and online estimation/sequential validation. See Nordland and Holst (2022) <doi:10.48550/arXiv.2212.02335> for documentation and references.

Version:1.6.2
Depends:R (≥ 4.1),SuperLearner
Imports:data.table (≥ 1.14.5),lava (≥ 1.7.2.1),future.apply,progressr, methods,policytree (≥ 1.2.0),survival,targeted (≥ 0.6),DynTxRegime
Suggests:DTRlearn2,glmnet (≥ 4.1-6),mets,mgcv,xgboost,knitr,ranger,rmarkdown,testthat (≥ 3.0),ggplot2
Published:2025-12-04
DOI:10.32614/CRAN.package.polle
Author:Andreas Nordland [aut, cre], Klaus HolstORCID iD [aut]
Maintainer:Andreas Nordland <andreasnordland at gmail.com>
BugReports:https://github.com/AndreasNordland/polle/issues
License:Apache License (≥ 2)
NeedsCompilation:no
Citation:polle citation info
Materials:README,NEWS
CRAN checks:polle results

Documentation:

Reference manual:polle.html ,polle.pdf
Vignettes:optimal_subgroup (source,R code)
policy_data (source,R code)
policy_eval (source,R code)
policy_learn (source,R code)
right_censoring (source,R code)

Downloads:

Package source: polle_1.6.2.tar.gz
Windows binaries: r-devel:polle_1.6.2.zip, r-release:polle_1.6.2.zip, r-oldrel:polle_1.6.2.zip
macOS binaries: r-release (arm64):polle_1.6.2.tgz, r-oldrel (arm64):polle_1.6.2.tgz, r-release (x86_64):polle_1.6.2.tgz, r-oldrel (x86_64):polle_1.6.2.tgz
Old sources: polle archive

Reverse dependencies:

Reverse suggests:targeted

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=polleto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp