Data analysis in the paper of Bai and Wu (2023b).
Hong Kong circulatory and respiratory data.
library(mlrv)library(foreach)library(magrittr)data(hk_data)colnames(hk_data)=c("SO2","NO2","Dust","Ozone","Temperature","Humidity","num_circu","num_respir","Hospital Admission","w1","w2","w3","w4","w5","w6")n=nrow(hk_data)t= (1:n)/nhk=list()hk$x=as.matrix(cbind(rep(1,n),scale(hk_data[,1:3])))hk$y= hk_data$`Hospital Admission`pvmatrix=matrix(nrow=2,ncol=4)###inistializationsetting=list(B =5000,gcv =1,neighbour =1)setting$lb=floor(10/7*n^(4/15))- setting$neighboursetting$ub=max(floor(25/7*n^(4/15))+ setting$neighbour, setting$lb+2*setting$neighbour+1)setting$lrvmethod=0.i=1# print(rule_of_thumb(y= hk$y, x = hk$x))for(typeinc("KPSS","RS","VS","KS")){ setting$type= typeprint(type) result_reg=heter_covariate(list(y= hk$y,x = hk$x), setting,mvselect =-2)print(paste("p-value",result_reg)) pvmatrix[1,i]= result_reg i= i+1}## [1] "KPSS"## [1] "p-value 0.2838"## [1] "RS"## [1] "p-value 0.2896"## [1] "VS"## [1] "p-value 0.1148"## [1] "KS"## [1] "p-value 0.4124"setting$lrvmethod=1i=1for(typeinc("KPSS","RS","VS","KS")){ setting$type= typeprint(type) result_reg=heter_covariate(list(y= hk$y,x = hk$x), setting,mvselect =-2)print(paste("p-value",result_reg)) pvmatrix[2,i]= result_reg i= i+1}## [1] "KPSS"## [1] "p-value 0.6866"## [1] "RS"## [1] "p-value 0.8066"## [1] "VS"## [1] "p-value 0.5126"## [1] "KS"## [1] "p-value 0.8346"rownames(pvmatrix)=c("plug","diff")colnames(pvmatrix)=c("KPSS","RS","VS","KS")knitr::kable(pvmatrix,type="latex")| KPSS | RS | VS | KS | |
|---|---|---|---|---|
| plug | 0.2838 | 0.2896 | 0.1148 | 0.4124 |
| diff | 0.6866 | 0.8066 | 0.5126 | 0.8346 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package## % Tue Jul 30 21:23:49 2024## \begin{table}[ht]## \centering## \begin{tabular}{rrrrr}## \hline## & KPSS & RS & VS & KS \\ ## \hline## plug & 0.284 & 0.290 & 0.115 & 0.412 \\ ## diff & 0.687 & 0.807 & 0.513 & 0.835 \\ ## \hline## \end{tabular}## \end{table}Using parameter `shift’ to multiply the GCV selected bandwidth by afactor. - Shift = 1.2 with plug-in estimator.
pvmatrix=matrix(nrow=2,ncol=4)setting$lrvmethod=0i=1for(typeinc("KPSS","RS","VS","KS")){ setting$type= typeprint(type) result_reg=heter_covariate(list(y= hk$y,x = hk$x), setting,mvselect =-2,shift =1.2)print(paste("p-value",result_reg)) pvmatrix[1,i]= result_reg i= i+1}## [1] "KPSS"## [1] "p-value 0.4256"## [1] "RS"## [1] "p-value 0.3638"## [1] "VS"## [1] "p-value 0.118"## [1] "KS"## [1] "p-value 0.561"setting$lrvmethod=1i=1for(typeinc("KPSS","RS","VS","KS")){ setting$type= typeprint(type) result_reg=heter_covariate(list(y= hk$y,x = hk$x), setting,mvselect =-2,verbose_dist =TRUE,shift =1.2)print(paste("p-value",result_reg)) pvmatrix[2,i]= result_reg i= i+1}## [1] "KPSS"## [1] "gcv 0.193398841583897"## [1] "m 14 tau_n 0.332134206312301"## [1] "test statistic: 141.654657280933"## [1] "Bootstrap distribution"## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 13.81 107.33 215.16 368.80 460.94 5186.84 ## [1] "p-value 0.6462"## [1] "RS"## [1] "gcv 0.193398841583897"## [1] "m 15 tau_n 0.332134206312301"## [1] "test statistic: 1067.76713443354"## [1] "Bootstrap distribution"## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 535.2 1023.8 1232.0 1302.6 1508.2 3383.7 ## [1] "p-value 0.6994"## [1] "VS"## [1] "gcv 0.193398841583897"## [1] "m 17 tau_n 0.332134206312301"## [1] "test statistic: 103.342038019402"## [1] "Bootstrap distribution"## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 11.94 70.04 110.26 152.36 187.41 1230.74 ## [1] "p-value 0.538"## [1] "KS"## [1] "gcv 0.193398841583897"## [1] "m 17 tau_n 0.382134206312301"## [1] "test statistic: 671.676091515897"## [1] "Bootstrap distribution"## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 352.6 720.4 923.3 1007.3 1213.0 3363.9 ## [1] "p-value 0.8108"rownames(pvmatrix)=c("plug","diff")colnames(pvmatrix)=c("KPSS","RS","VS","KS")knitr::kable(pvmatrix,type="latex")| KPSS | RS | VS | KS | |
|---|---|---|---|---|
| plug | 0.4256 | 0.3638 | 0.118 | 0.5610 |
| diff | 0.6462 | 0.6994 | 0.538 | 0.8108 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package## % Tue Jul 30 21:25:13 2024## \begin{table}[ht]## \centering## \begin{tabular}{rrrrr}## \hline## & KPSS & RS & VS & KS \\ ## \hline## plug & 0.426 & 0.364 & 0.118 & 0.561 \\ ## diff & 0.646 & 0.699 & 0.538 & 0.811 \\ ## \hline## \end{tabular}## \end{table}pvmatrix=matrix(nrow=2,ncol=4)setting$lrvmethod=0i=1for(typeinc("KPSS","RS","VS","KS")){ setting$type= typeprint(type) result_reg=heter_covariate(list(y= hk$y,x = hk$x), setting,mvselect =-2,shift =0.8)print(paste("p-value",result_reg)) pvmatrix[1,i]= result_reg i= i+1}## [1] "KPSS"## [1] "p-value 0.2458"## [1] "RS"## [1] "p-value 0.1662"## [1] "VS"## [1] "p-value 0.1234"## [1] "KS"## [1] "p-value 0.2726"setting$lrvmethod=1i=1for(typeinc("KPSS","RS","VS","KS")){ setting$type= typeprint(type) result_reg=heter_covariate(list(y= hk$y,x = hk$x), setting,mvselect =-2,verbose_dist =TRUE,shift =0.8)print(paste("p-value",result_reg)) pvmatrix[2,i]= result_reg i= i+1}## [1] "KPSS"## [1] "gcv 0.128932561055931"## [1] "m 8 tau_n 0.382134206312301"## [1] "test statistic: 166.543448031107"## [1] "Bootstrap distribution"## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 12.78 99.10 200.38 331.58 421.82 3152.45 ## [1] "p-value 0.571"## [1] "RS"## [1] "gcv 0.128932561055931"## [1] "m 18 tau_n 0.382134206312301"## [1] "test statistic: 998.08124125936"## [1] "Bootstrap distribution"## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 699.6 1276.2 1535.9 1614.1 1874.8 3730.1 ## [1] "p-value 0.9464"## [1] "VS"## [1] "gcv 0.128932561055931"## [1] "m 9 tau_n 0.332134206312301"## [1] "test statistic: 78.0587445148255"## [1] "Bootstrap distribution"## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 14.07 63.32 110.68 157.21 199.91 1498.85 ## [1] "p-value 0.6586"## [1] "KS"## [1] "gcv 0.128932561055931"## [1] "m 9 tau_n 0.332134206312301"## [1] "test statistic: 709.345279801765"## [1] "Bootstrap distribution"## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 290.6 695.8 910.2 986.8 1200.7 2953.0 ## [1] "p-value 0.7344"rownames(pvmatrix)=c("plug","diff")colnames(pvmatrix)=c("KPSS","RS","VS","KS")knitr::kable(pvmatrix,type="latex")| KPSS | RS | VS | KS | |
|---|---|---|---|---|
| plug | 0.2458 | 0.1662 | 0.1234 | 0.2726 |
| diff | 0.5710 | 0.9464 | 0.6586 | 0.7344 |
## % latex table generated in R 4.4.1 by xtable 1.8-4 package## % Tue Jul 30 21:26:26 2024## \begin{table}[ht]## \centering## \begin{tabular}{rrrrr}## \hline## & KPSS & RS & VS & KS \\ ## \hline## plug & 0.246 & 0.166 & 0.123 & 0.273 \\ ## diff & 0.571 & 0.946 & 0.659 & 0.734 \\ ## \hline## \end{tabular}## \end{table}Test if the coefficient function of “SO2”,“NO2”,“Dust” of the secondyear is constant.
hk$x=as.matrix(cbind(rep(1,n), (hk_data[,1:3])))hk$y= hk_data$`Hospital Admission`setting$type=0setting$bw_set=c(0.1,0.35)setting$eta=0.2setting$lrvmethod=1setting$lb=10setting$ub=15hk1=list()hk1$x= hk$x[366:730,]hk1$y= hk$y[366:730]p1<-heter_gradient(hk1, setting,mvselect =-2,verbose = T)## [1] "m 12 tau_n 0.364293094094381"## [1] 10464.35## V1 ## Min. : 1537 ## 1st Qu.: 3809 ## Median : 4838 ## Mean : 5239 ## 3rd Qu.: 6296 ## Max. :15552## [1] 0.0158