We have decided to deprecate censusr and instead use (and contribute)totidycensus.Censusr will remain on CRAN, but support will discontinue.
Access data hosted by the US Census Bureau.
The Census has made a very nice API for data scientists to accesstheir data tables. Thecensusr package will help R usersaccess this API in a convenient and R-like way.
The API works by sending a specially-formatted URL to the the CensusAPI server, which returns an XML or JSON document containing therequested information. In practice, any table available on AmericanFactFinder is available through the API, though the user will need tofind the raw name for the variable in the Census APIguide.
These instructions are modified from hadley’sAPIbest practices documentation.
Users of this package will need to request an API key, which isavailable for free from the Census Bureau on request. Go tohttp://api.census.gov/data/key_signup.htmlto register. Copy this token to your clipboard.
Identify your home directory. If you are not sure what it is,enternormalizePath("~/") in an R session. If in RStudio,use the R console.
Create a new text file. If in RStudio, do File > New File >Text file.
Create a line like this:
CENSUS_TOKEN=blahblahblahblahblahblahwhere the nameCENSUS_TOKEN reminds you which API thisis for andblahblahblahblahblahblah is your token, pastedfrom the clipboard. Make sure the last line in the file is empty. (If itis not empty, R will silently fail to load the file. If you’re using aneditor that shows line numbers, there should be two lines, where thesecond one is empty.)
.Renviron. If questioned, YES you do want to use a filenamethat begins with a dot..Note that by default dotfiles are usually hidden. But within RStudio,the file browser will make.Renviron visible and thereforeeasy to edit in the future.
Restart R..Renviron is processed only at the startof an R session.
UseSys.getenv() to access your token. Forexample,
call_census_api(...,api_key =Sys.getenv("CENSUS_TOKEN") ...)FAQ: Why define this environment variable via.Renvironinstead of in.bash_profile or.bashrc?
Because there are many combinations of OS and ways of running R wherethe.Renviron approach “just works”” and the bash stuffdoes not. When R is a child process of, say, Emacs or RStudio, you can’talways count on environment variables being passed to R. Put them in anR-specific start-up file and save yourself some grief.
The package works by sending a list of requested variables and a listof geographies. The call below requests the number of households owning0, 1, 2, 3, or 4 or more vehicles in Wake County, North Carolina(geoid = 37183). We specify that we want this table for2012 5-year summary level.
library(censusr)call_census_api(paste("B08201_",sprintf("%03d",2:6),"E",sep =""),names =c(0:4),geoids ="37183",data_source ="acs",year =2012,period =5)## Source: local data frame [1 x 6]## ## geoid 0 1 2 3 4## (chr) (dbl) (dbl) (dbl) (dbl) (dbl)## 1 37183 15813 111992 149742 47222 16534We can use theallgeos argument to say that we actuallywant these variables forall census tracts within WakeCounty.
est<-call_census_api(paste("B08201_",sprintf("%03d",2:6),"E",sep =""),names =paste0("est_",c(0:4)),geoids ="37183",allgeos ="tr",data_source ="acs",year =2012,period =5)est## Source: local data frame [187 x 6]## ## geoid est_0 est_1 est_2 est_3 est_4## (chr) (dbl) (dbl) (dbl) (dbl) (dbl)## 1 37183050100 248 516 310 37 0## 2 37183050300 293 826 489 51 19## 3 37183050400 44 369 328 23 9## 4 37183050500 181 885 436 87 30## 5 37183050600 289 600 209 69 19## 6 37183050700 503 584 218 118 0## 7 37183050800 359 227 162 74 0## 8 37183050900 442 249 80 3 0## 9 37183051000 202 543 329 68 28## 10 37183051101 149 201 208 54 64## .. ... ... ... ... ... ...If we want the margins of error on this table instead of theestimates, we can change the variable to call theM typeinstead of theE type.
moe<-call_census_api(paste("B08201_",sprintf("%03d",2:6),"M",sep =""),names =paste0("moe_",c(0:4)),geoids ="37183",allgeos ="tr",data_source ="acs",year =2012,period =5)moe## Source: local data frame [187 x 6]## ## geoid moe_0 moe_1 moe_2 moe_3 moe_4## (chr) (dbl) (dbl) (dbl) (dbl) (dbl)## 1 37183050100 87 169 81 52 13## 2 37183050300 101 163 106 53 22## 3 37183050400 25 80 62 21 13## 4 37183050500 75 143 98 54 29## 5 37183050600 95 112 76 47 14## 6 37183050700 109 97 82 61 13## 7 37183050800 94 85 73 58 13## 8 37183050900 91 78 43 6 13## 9 37183051000 96 117 99 61 44## 10 37183051101 78 75 80 83 79## .. ... ... ... ... ... ...