Movatterモバイル変換


[0]ホーム

URL:


DevTreatRules: Develop Treatment Rules with Observational Data

Develop and evaluate treatment rules based on: (1) the standard indirect approach of split-regression, which fits regressions separately in both treatment groups and assigns an individual to the treatment option under which predicted outcome is more desirable; (2) the direct approach of outcome-weighted-learning proposed by Yingqi Zhao, Donglin Zeng, A. John Rush, and Michael Kosorok (2012) <doi:10.1080/01621459.2012.695674>; (3) the direct approach, which we refer to as direct-interactions, proposed by Shuai Chen, Lu Tian, Tianxi Cai, and Menggang Yu (2017) <doi:10.1111/biom.12676>. Please see the vignette for a walk-through of how to start with an observational dataset whose design is understood scientifically and end up with a treatment rule that is trustworthy statistically, along with an estimation of rule benefit in an independent sample.

Version:1.1.0
Depends:R (≥ 3.2.0)
Imports:glmnet,DynTxRegime,modelObj
Suggests:dplyr,knitr,rmarkdown
Published:2020-03-20
DOI:10.32614/CRAN.package.DevTreatRules
Author:Jeremy Roth [cre, aut], Noah Simon [aut]
Maintainer:Jeremy Roth <jhroth at uw.edu>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
Materials:NEWS
CRAN checks:DevTreatRules results

Documentation:

Reference manual:DevTreatRules.html ,DevTreatRules.pdf
Vignettes:DevTreatRules (source,R code)

Downloads:

Package source: DevTreatRules_1.1.0.tar.gz
Windows binaries: r-devel:DevTreatRules_1.1.0.zip, r-release:DevTreatRules_1.1.0.zip, r-oldrel:DevTreatRules_1.1.0.zip
macOS binaries: r-release (arm64):DevTreatRules_1.1.0.tgz, r-oldrel (arm64):DevTreatRules_1.1.0.tgz, r-release (x86_64):DevTreatRules_1.1.0.tgz, r-oldrel (x86_64):DevTreatRules_1.1.0.tgz
Old sources: DevTreatRules archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=DevTreatRulesto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp