Movatterモバイル変換


[0]ホーム

URL:


Ckmeans.1d.dp: Optimal, Fast, and Reproducible Univariate Clustering

Fast, optimal, and reproducible weighted univariate clustering by dynamic programming. Four problems are solved, including univariate k-means (Wang & Song 2011) <doi:10.32614/RJ-2011-015> (Song & Zhong 2020) <doi:10.1093/bioinformatics/btaa613>, k-median, k-segments, and multi-channel weighted k-means. Dynamic programming is used to minimize the sum of (weighted) within-cluster distances using respective metrics. Its advantage over heuristic clustering in efficiency and accuracy is pronounced when there are many clusters. Multi-channel weighted k-means groups multiple univariate signals into k clusters. An auxiliary function generates histograms adaptive to patterns in data. This package provides a powerful set of tools for univariate data analysis with guaranteed optimality, efficiency, and reproducibility, useful for peak calling on temporal, spatial, and spectral data.

Version:4.3.5
Imports:Rcpp,Rdpack (≥ 0.6-1)
LinkingTo:Rcpp
Suggests:testthat,knitr,rmarkdown,RColorBrewer
Published:2023-08-19
DOI:10.32614/CRAN.package.Ckmeans.1d.dp
Author:Joe SongORCID iD [aut, cre], Hua ZhongORCID iD [aut], Haizhou Wang [aut]
Maintainer:Joe Song <joemsong at cs.nmsu.edu>
License:LGPL (≥ 3)
NeedsCompilation:yes
Citation:Ckmeans.1d.dp citation info
Materials:README,NEWS
CRAN checks:Ckmeans.1d.dp results

Documentation:

Reference manual:Ckmeans.1d.dp.html ,Ckmeans.1d.dp.pdf
Vignettes:Tutorial: Optimal univariate clustering (source,R code)
Note: Weight scaling in cluster analysis (source)
Tutorial: Adaptive versus regular histograms (source,R code)

Downloads:

Package source: Ckmeans.1d.dp_4.3.5.tar.gz
Windows binaries: r-devel:Ckmeans.1d.dp_4.3.5.zip, r-release:Ckmeans.1d.dp_4.3.5.zip, r-oldrel:Ckmeans.1d.dp_4.3.5.zip
macOS binaries: r-release (arm64):Ckmeans.1d.dp_4.3.5.tgz, r-oldrel (arm64):Ckmeans.1d.dp_4.3.5.tgz, r-release (x86_64):Ckmeans.1d.dp_4.3.5.tgz, r-oldrel (x86_64):Ckmeans.1d.dp_4.3.5.tgz
Old sources: Ckmeans.1d.dp archive

Reverse dependencies:

Reverse depends:GenomicOZone
Reverse imports:autostats,CellBarcode,clusterHD,GridOnClusters,Harman,kcmeans,OptCirClust,SILFS,SPECK,STREAK,weitrix
Reverse suggests:bakR,CytoProfile,DiffXTables,FunChisq,mapsf,xgboost

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=Ckmeans.1d.dpto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp