Movatterモバイル変換


[0]ホーム

URL:


envoutliers: Methods for Identification of Outliers in Environmental Data

Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) <doi:10.1002/cem.2997>) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) <doi:10.1016/j.apr.2017.01.004>) and the third method (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>).

Version:1.1.0
Imports:MASS,car,changepoint,ecp, graphics,ismev,lokern,robustbase, stats
Suggests:openair
Published:2020-05-07
DOI:10.32614/CRAN.package.envoutliers
Author:Martina Campulova [cre], Martina Campulova [aut], Roman Campula [ctb]
Maintainer:Martina Campulova <martina.campulova at mendelu.cz>
License:GPL-2
NeedsCompilation:no
Citation:envoutliers citation info
Materials:NEWS
In views:AnomalyDetection
CRAN checks:envoutliers results

Documentation:

Reference manual:envoutliers.html ,envoutliers.pdf

Downloads:

Package source: envoutliers_1.1.0.tar.gz
Windows binaries: r-devel:envoutliers_1.1.0.zip, r-release:envoutliers_1.1.0.zip, r-oldrel:envoutliers_1.1.0.zip
macOS binaries: r-release (arm64):envoutliers_1.1.0.tgz, r-oldrel (arm64):envoutliers_1.1.0.tgz, r-release (x86_64):envoutliers_1.1.0.tgz, r-oldrel (x86_64):envoutliers_1.1.0.tgz
Old sources: envoutliers archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=envoutliersto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp