Movatterモバイル変換


[0]ホーム

URL:


pangoling: Access to Large Language Model Predictions

Provides access to word predictability estimates using large language models (LLMs) based on 'transformer' architectures via integration with the 'Hugging Face' ecosystem <https://huggingface.co/>. The package interfaces with pre-trained neural networks and supports both causal/auto-regressive LLMs (e.g., 'GPT-2') and masked/bidirectional LLMs (e.g., 'BERT') to compute the probability of words, phrases, or tokens given their linguistic context. For details on GPT-2 and causal models, see Radford et al. (2019) <https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf>, for details on BERT and masked models, see Devlin et al. (2019) <doi:10.48550/arXiv.1810.04805>. By enabling a straightforward estimation of word predictability, the package facilitates research in psycholinguistics, computational linguistics, and natural language processing (NLP).

Version:1.0.3
Depends:R (≥ 4.1.0)
Imports:cachem,data.table,memoise,reticulate,rstudioapi, stats,tidyselect,tidytable (≥ 0.7.2), utils
Suggests:brms,knitr, parallel,rmarkdown,spelling,testthat (≥3.0.0),tictoc,covr
Published:2025-04-07
DOI:10.32614/CRAN.package.pangoling
Author:Bruno NicenboimORCID iD [aut, cre], Chris Emmerly [ctb], Giovanni Cassani [ctb], Lisa Levinson [rev], Utku Turk [rev]
Maintainer:Bruno Nicenboim <b.nicenboim at tilburguniversity.edu>
BugReports:https://github.com/ropensci/pangoling/issues
License:MIT + fileLICENSE
URL:https://docs.ropensci.org/pangoling/,https://github.com/ropensci/pangoling
NeedsCompilation:no
Language:en-US
Citation:pangoling citation info
Materials:NEWS
CRAN checks:pangoling results

Documentation:

Reference manual:pangoling.html ,pangoling.pdf
Vignettes:Worked-out example: Surprisal from a causal (GPT) model as a cognitive processing bottleneck in reading (source)
Using a Bert model to get the predictability of words in their context (source)
Using a GPT2 transformer model to get word predictability (source)
Troubleshooting the use of Python in R (source,R code)

Downloads:

Package source: pangoling_1.0.3.tar.gz
Windows binaries: r-devel:pangoling_1.0.3.zip, r-release:pangoling_1.0.3.zip, r-oldrel:pangoling_1.0.3.zip
macOS binaries: r-release (arm64):pangoling_1.0.3.tgz, r-oldrel (arm64):pangoling_1.0.3.tgz, r-release (x86_64):pangoling_1.0.3.tgz, r-oldrel (x86_64):pangoling_1.0.3.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=pangolingto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp