Movatterモバイル変換


[0]ホーム

URL:


Type:Package
Title:Make 'ggplot2' Graphics Interactive
Version:0.9.2
Description:Create interactive 'ggplot2' graphics using 'htmlwidgets'.
License:GPL-3
URL:https://davidgohel.github.io/ggiraph/
BugReports:https://github.com/davidgohel/ggiraph/issues
Imports:cli, dplyr, gdtools (≥ 0.4.4), ggplot2 (≥ 4.0.0), grid,htmltools, htmlwidgets (≥ 1.5), purrr, Rcpp (≥ 1.1.0), rlang,S7 (≥ 0.2.0), stats, systemfonts (≥ 1.3.1), vctrs
Suggests:ggbeeswarm, ggrepel (≥ 0.9.1), hexbin, knitr, maps,quantreg, rmarkdown, sf (≥ 1.0), shiny, tinytest, xml2 (≥1.0)
LinkingTo:Rcpp, systemfonts
VignetteBuilder:knitr
Copyright:See file COPYRIGHTS.
Encoding:UTF-8
RoxygenNote:7.3.3
SystemRequirements:libpng
Collate:'RcppExports.R' 'ipar.R' 'utils_ggplot2_performance.R''utils_ggplot2.R' 'utils.R' 'annotate_interactive.R''annotation_raster_interactive.R' 'utils_css.R' 'fonts.R''girafe_options.R' 'default.R' 'dsvg.R' 'dsvg_view.R''element_interactive.R' 'facet_interactive.R''geom_abline_interactive.R' 'geom_path_interactive.R''geom_polygon_interactive.R' 'geom_rect_interactive.R''geom_bar_interactive.R' 'geom_bin_2d_interactive.R''geom_boxplot_interactive.R' 'geom_col_interactive.R''geom_contour_interactive.R' 'geom_count_interactive.R''geom_crossbar_interactive.R' 'geom_curve_interactive.R''geom_density_2d_interactive.R' 'geom_density_interactive.R''geom_dotplot_interactive.R' 'geom_errorbar_interactive.R''geom_errorbarh_interactive.R' 'geom_freqpoly_interactive.R''geom_hex_interactive.R' 'geom_histogram_interactive.R''geom_hline_interactive.R' 'geom_jitter_interactive.R''geom_label_interactive.R' 'geom_linerange_interactive.R''geom_map_interactive.R' 'geom_point_interactive.R''geom_pointrange_interactive.R' 'geom_quantile_interactive.R''geom_quasirandom_interactive.R' 'geom_raster_interactive.R''geom_ribbon_interactive.R' 'geom_segment_interactive.R''geom_sf_interactive.R' 'geom_smooth_interactive.R''geom_spoke_interactive.R' 'geom_text_interactive.R''geom_text_repel_interactive.R' 'geom_tile_interactive.R''geom_violin_interactive.R' 'geom_vline_interactive.R''ggiraph.R' 'girafe.R' 'grob_interactive.R''guide_bins_interactive.R' 'guide_colourbar_interactive.R''guide_coloursteps_interactive.R' 'guide_interactive.R''guide_legend_interactive.R' 'interactive_circle_grob.R''interactive_curve_grob.R' 'interactive_path_grob.R''interactive_points_grob.R' 'interactive_polygon_grob.R''interactive_polyline_grob.R' 'interactive_raster_grob.R''interactive_rect_grob.R' 'interactive_roundrect_grob.R''interactive_segments_grob.R' 'interactive_text_grob.R''labeller_interactive.R' 'layer_interactive.R''scale_alpha_interactive.R' 'scale_brewer_interactive.R''scale_colour_interactive.R' 'scale_gradient_interactive.R''scale_interactive.R' 'scale_linetype_interactive.R''scale_manual_interactive.R' 'scale_shape_interactive.R''scale_size_interactive.R' 'scale_steps_interactive.R''scale_viridis_interactive.R' 'tracers.R' 'utils_data.r'
NeedsCompilation:yes
Packaged:2025-10-07 14:23:55 UTC; davidgohel
Author:David Gohel [aut, cre], Panagiotis Skintzos [aut], Mike Bostock [cph] (d3.js), Speros Kokenes [cph] (d3-lasso), Eric Shull [cph] (saveSvgAsPng js library), Lee Thomason [cph] (TinyXML2), Vladimir Agafonkin [cph] (Flatbush), Eric Book [ctb] (hline and vline geoms)
Maintainer:David Gohel <david.gohel@ardata.fr>
Repository:CRAN
Date/Publication:2025-10-07 15:00:02 UTC

ggproto classes for ggiraph

Description

ggproto classes for ggiraph

Geoms

All⁠geom_*_interactive⁠ functions (likegeom_point_interactive) return a layer thatcontains a⁠GeomInteractive*⁠ object (likeGeomInteractivePoint). The⁠Geom*⁠object is responsible for rendering the data in the plot.

SeeGeom for more information.


Create interactive annotations

Description

The layer is based onggplot2::annotate().See the documentation for that function for more details.

Usage

annotate_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for annotate_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe(),interactive_parameters,annotation_raster_interactive()

Examples

# add interactive annotation to a ggplot -------library(ggplot2)library(ggiraph)library(gdtools)register_liberationsans()gg <- ggplot(mtcars, aes(x = disp, y = qsec)) +  geom_point(size = 2) +  annotate_interactive(    "rect",    xmin = 100,    xmax = 400,    fill = "red",    data_id = "an_id",    tooltip = "a tooltip",    ymin = 18,    ymax = 20,    alpha = .5  ) +  theme_minimal(base_family = "Liberation Sans", base_size = 11)girafe(  ggobj = gg,  width_svg = 5,  height_svg = 4,  dependencies = list(    liberationsansHtmlDependency()  ))

Create interactive raster annotations

Description

The layer is based onggplot2::annotation_raster().See the documentation for that function for more details.

Usage

annotation_raster_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for annotate_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()

Examples

# add interactive raster annotation to a ggplot -------library(ggplot2)library(ggiraph)# Generate datarainbow <- matrix(hcl(seq(0, 360, length.out = 50 * 50), 80, 70), nrow = 50)p <- ggplot(mtcars, aes(mpg, wt)) +  geom_point() +  annotation_raster_interactive(    rainbow,    15,    20,    3,    4,    tooltip = "I am an image!"  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}# To fill up whole plotp <- ggplot(mtcars, aes(mpg, wt)) +  annotation_raster_interactive(    rainbow,    -Inf,    Inf,    -Inf,    Inf,    tooltip = "I am an image too!"  ) +  geom_point()x <- girafe(ggobj = p)if (interactive()) {  print(x)}

SVG Graphics Driver

Description

This function produces SVG files (compliant to the current w3 svg XML standard)where elements can be made interactive.

In order to generate the output, used fonts must be available on the computer used to create the svg,used fonts must also be available on the computer used to render the svg.

Usage

dsvg(  file = "Rplots.svg",  width = 6,  height = 6,  bg = "white",  pointsize = 12,  standalone = TRUE,  setdims = TRUE,  canvas_id = "svg_1",  title = NULL,  desc = NULL,  fonts = list())

Arguments

file

the file where output will appear.

height,width

Height and width in inches.

bg

Default background color for the plot (defaults to "white").

pointsize

default point size.

standalone

Produce a stand alone svg file? IfFALSE, omitsxml header and default namespace.

setdims

IfTRUE (the default), the svg node will have attributes width & height set.

canvas_id

svg id within HTML page.

title

A label for accessibility purposes (aria-label/aria-labelledby).Be aware that when using this, the browser will use it as a tooltip for the whole svg andit may class with the interactive elements' tooltip.

desc

A longer description for accessibility purposes (aria-description/aria-describedby).

fonts

Named list of font names to be aliased withfonts installed on your system. If unspecified, the R defaultfamilies "sans", "serif", "mono" and "symbol"are aliased to the family returned bymatch_family().

If fonts are available, the default mapping will use these values:

R family Font on Windows Font on Unix Font on Mac OS
sans Arial DejaVu Sans Helvetica
serif Times New Roman DejaVu serif Times
mono Courier DejaVu mono Courier
symbol Symbol DejaVu Sans Symbol

As an example, usingfonts = list(sans = "Roboto") would make thedefault font "Roboto" as many ggplot theme are usingtheme_minimal(base_family="") ortheme_minimal(base_family="sans").

You can also use theme_minimal(base_family="Roboto").

See Also

Devices

Examples

fileout <- tempfile(fileext = ".svg")dsvg(file = fileout)plot(rnorm(10), main="Simple Example", xlab = "", ylab = "")dev.off()

Run plotting code and view svg in RStudio Viewer or web broswer.

Description

This is useful primarily for testing. Requires thehtmltoolspackage.

Usage

dsvg_view(code, ...)

Arguments

code

Plotting code to execute.

...

Other arguments passed on todsvg().

Examples

dsvg_view(plot(1:10))dsvg_view(hist(rnorm(100)))

Create interactive theme elements

Description

With these functions the user can add interactivity to variousggplot2::theme()elements.

They are based onggplot2::element_rect(),ggplot2::element_line() andggplot2::element_text()See the documentation for those functions for more details.

Usage

element_line_interactive(...)element_rect_interactive(...)element_text_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for element_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant functionand they should be scalar values.

For theme text elements (element_text_interactive()), the interactive parameterscan also be supplied while setting a label value, via theggplot2::labs() familyof functions or when setting a scale/guide title or key label.Instead of setting a character value for the element, functionlabel_interactive() can be used to define interactive parametersto go along with the label.When the parameters are supplied that way, they override the default valuesthat are set at the theme viaelement_text_interactive() or via theguide'stheme parameters.

See Also

girafe()

Examples

# add interactive theme elements -------library(ggplot2)library(ggiraph)library(gdtools)register_liberationsans()dataset <- structure(  list(    qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22),    disp = c(160, 160, 108, 258, 360, 225),    carname = c(      "Mazda RX4",      "Mazda RX4 Wag",      "Datsun 710",      "Hornet 4 Drive",      "Hornet Sportabout",      "Valiant"    ),    wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46)  ),  row.names = c(    "Mazda RX4",    "Mazda RX4 Wag",    "Datsun 710",    "Hornet 4 Drive",    "Hornet Sportabout",    "Valiant"  ),  class = "data.frame")# plotsgg_point = ggplot(data = dataset) +  geom_point_interactive(aes(    x = wt,    y = qsec,    color = disp,    tooltip = carname,    data_id = carname  )) +  theme_minimal(base_family = "Liberation Sans", base_size = 11) +  theme(    plot.title = element_text_interactive(      data_id = "plot.title",      tooltip = "plot title",      hover_css = "fill:red;stroke:none;font-size:12pt"    ),    plot.subtitle = element_text_interactive(      data_id = "plot.subtitle",      tooltip = "plot subtitle",      hover_css = "fill:none;"    ),    axis.title.x = element_text_interactive(      data_id = "axis.title.x",      tooltip = "Description for x axis",      hover_css = "fill:red;stroke:none;"    ),    axis.title.y = element_text_interactive(      data_id = "axis.title.y",      tooltip = "Description for y axis",      hover_css = "fill:red;stroke:none;"    ),    panel.grid.major = element_line_interactive(      data_id = "panel.grid",      tooltip = "Major grid lines",      hover_css = "fill:none;stroke:red;"    )  ) +  labs(    title = "Interactive points example!",    subtitle = label_interactive(      "by ggiraph",      tooltip = "Click me!",      onclick = "window.open(\"https://davidgohel.github.io/ggiraph/\")",      hover_css = "fill:magenta;cursor:pointer;"    )  )x <- girafe(  ggobj = gg_point,  dependencies = list(    liberationsansHtmlDependency()  ))if (interactive()) {  print(x)}

Create interactive grid facets

Description

These facets are based onggplot2::facet_grid().

To make a facet interactive, it is mandatory to uselabeller_interactive() for argumentlabeller.

Usage

facet_grid_interactive(..., interactive_on = "text")

Arguments

...

arguments passed to base function andlabeller_interactive() for argumentlabeller.

interactive_on

one of 'text' (only strip text aremade interactive), 'rect' (only strip rectangles aremade interactive) or 'both' (strip text and rectangles aremade interactive).

Value

An interactive facetting object.

See Also

girafe()


Create interactive wraped facets

Description

These facets are based onggplot2::facet_wrap().

To make a facet interactive, it is mandatory to uselabeller_interactive() for argumentlabeller.

Usage

facet_wrap_interactive(..., interactive_on = "text")

Arguments

...

arguments passed to base function andlabeller_interactive() for argumentlabeller.

interactive_on

one of 'text' (only strip text aremade interactive), 'rect' (only strip rectangles aremade interactive) or 'both' (strip text and rectangles aremade interactive).

Value

An interactive facetting object.

See Also

girafe()


Create interactive reference lines

Description

These geometries are based onggplot2::geom_abline(),ggplot2::geom_hline() andggplot2::geom_vline().

Usage

geom_abline_interactive(...)geom_hline_interactive(...)geom_vline_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

girafe()

girafe()

Examples

# add diagonal interactive reference lines to a ggplot -------library(ggplot2)library(ggiraph)p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()g <- p + geom_abline_interactive(intercept = 20, tooltip = 20)x <- girafe(ggobj = g)if (interactive()) {  print(x)}l <- coef(lm(mpg ~ wt, data = mtcars))g <- p +  geom_abline_interactive(    intercept = l[[1]],    slope = l[[2]],    tooltip = paste("intercept:", l[[1]], "\nslope:", l[[2]]),    data_id = "abline"  )x <- girafe(ggobj = g)x <- girafe_options(  x = x,  opts_hover(css = "cursor:pointer;fill:orange;stroke:orange;"))if (interactive()) {  print(x)}# add horizontal interactive reference lines to a ggplot -------library(ggplot2)library(ggiraph)if (requireNamespace("dplyr", quietly = TRUE)) {  g1 <- ggplot(economics, aes(x = date, y = unemploy)) +    geom_point() +    geom_line()  gg_hline1 <- g1 +    geom_hline_interactive(      aes(yintercept = mean(unemploy), tooltip = round(mean(unemploy), 2)),      linewidth = 3    )  x <- girafe(ggobj = gg_hline1)  if (interactive()) print(x)}dataset <- data.frame(  x = c(1, 2, 5, 6, 8),  y = c(3, 6, 2, 8, 7),  vx = c(1, 1.5, 0.8, 0.5, 1.3),  vy = c(0.2, 1.3, 1.7, 0.8, 1.4),  year = c(2014, 2015, 2016, 2017, 2018))dataset$clickjs <- rep(paste0("alert(\"", mean(dataset$y), "\")"), 5)g2 <- ggplot(dataset, aes(x = year, y = y)) +  geom_point() +  geom_line()gg_hline2 <- g2 +  geom_hline_interactive(    aes(      yintercept = mean(y),      tooltip = round(mean(y), 2),      data_id = y,      onclick = clickjs    )  )x <- girafe(ggobj = gg_hline2)if (interactive()) {  print(x)}# add vertical interactive reference lines to a ggplot -------library(ggplot2)library(ggiraph)if (requireNamespace("dplyr", quietly = TRUE)) {  g1 <- ggplot(diamonds, aes(carat)) +    geom_histogram()  gg_vline1 <- g1 +    geom_vline_interactive(      aes(        xintercept = mean(carat),        tooltip = round(mean(carat), 2),        data_id = carat      ),      size = 3    )  x <- girafe(ggobj = gg_vline1)  if (interactive()) print(x)}dataset <- data.frame(x = rnorm(100))dataset$clickjs <- rep(  paste0("alert(\"", round(mean(dataset$x), 2), "\")"),  100)g2 <- ggplot(dataset, aes(x)) +  geom_density(fill = "#000000", alpha = 0.7)gg_vline2 <- g2 +  geom_vline_interactive(    aes(      xintercept = mean(x),      tooltip = round(mean(x), 2),      data_id = x,      onclick = clickjs    ),    color = "white"  )x <- girafe(ggobj = gg_vline2)x <- girafe_options(  x = x,  opts_hover(css = "cursor:pointer;fill:orange;stroke:orange;"))if (interactive()) {  print(x)}

Create interactive bars

Description

The geometries are based onggplot2::geom_bar()andggplot2::geom_col().See the documentation for those functions for more details.

Usage

geom_bar_interactive(...)geom_col_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive bar -------library(ggplot2)library(ggiraph)library(gdtools)register_liberationsans()p <- ggplot(mpg, aes(x = class, tooltip = class, data_id = class)) +  geom_bar_interactive() +  theme_minimal(base_family = "Liberation Sans", base_size = 11)x <- girafe(  ggobj = p,  dependencies = list(    liberationsansHtmlDependency()  ))if (interactive()) {  print(x)}dat <- data.frame(  name = c("David", "Constance", "Leonie"),  gender = c("Male", "Female", "Female"),  height = c(172, 159, 71))p <- ggplot(dat, aes(x = name, y = height, tooltip = gender, data_id = name)) +  geom_col_interactive() +  theme_minimal(base_family = "Liberation Sans", base_size = 11)x <- girafe(  ggobj = p,  dependencies = list(    liberationsansHtmlDependency()  ))if (interactive()) {  print(x)}# an example with interactive guide ----dat <- data.frame(  name = c("Guy", "Ginette", "David", "Cedric", "Frederic"),  gender = c("Male", "Female", "Male", "Male", "Male"),  height = c(169, 160, 171, 172, 171))p <- ggplot(dat, aes(x = name, y = height, fill = gender, data_id = name)) +  geom_bar_interactive(stat = "identity") +  scale_fill_manual_interactive(    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = c(Female = "Female", Male = "Male"),    tooltip = c(Male = "Male", Female = "Female")  ) +  theme_minimal(base_family = "Liberation Sans", base_size = 11)x <- girafe(  ggobj = p,  dependencies = list(    liberationsansHtmlDependency()  ))if (interactive()) {  print(x)}

Create interactive heatmaps of 2d bin counts

Description

The geometry is based onggplot2::geom_bin_2d().See the documentation for those functions for more details.

Usage

geom_bin_2d_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive bin2d heatmap to a ggplot -------library(ggplot2)library(ggiraph)p <- ggplot(diamonds, aes(x, y, fill = cut)) +  xlim(4, 10) +  ylim(4, 10) +  geom_bin2d_interactive(aes(tooltip = cut), bins = 30)x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Create interactive boxplot

Description

The geometry is based onggplot2::geom_boxplot().See the documentation for that function for more details.

Usage

geom_boxplot_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details

You can supply⁠interactive parameters⁠ for the outlier points by prefixing themwithoutlier. prefix. For example: aes(outlier.tooltip = 'bla', outlier.data_id = 'blabla').

IMPORTANT: when supplying outlier interactive parameters,the correctgroup aestheticmust be also supplied. Otherwise the default group calculationwill be incorrect, which will result in an incorrect plot.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive boxplot -------library(ggplot2)library(ggiraph)p <- ggplot(mpg, aes(x = class, y = hwy, tooltip = class)) +  geom_boxplot_interactive()x <- girafe(ggobj = p)if (interactive()) {  print(x)}p <- ggplot(mpg) +  geom_boxplot_interactive(    aes(      x = drv,      y = hwy,      fill = class,      data_id = class,      tooltip = after_stat({        paste0(          "class: ",          .data$fill,          "\nQ1: ",          prettyNum(.data$lower),          "\nQ3: ",          prettyNum(.data$upper),          "\nmedian: ",          prettyNum(.data$middle)        )      })    ),    outlier.colour = "red"  ) +  guides(fill = "none") +  theme_minimal()x <- girafe(ggobj = p)if (interactive()) {  print(x)}p <- ggplot(mpg) +  geom_boxplot_interactive(    aes(      x = drv,      y = hwy,      fill = class,      group = paste(drv, class),      data_id = class,      tooltip = after_stat({        paste0(          "class: ",          .data$fill,          "\nQ1: ",          prettyNum(.data$lower),          "\nQ3: ",          prettyNum(.data$upper),          "\nmedian: ",          prettyNum(.data$middle)        )      }),      outlier.tooltip = paste(        "I am an outlier!\nhwy:",        hwy,        "\ndrv:",        drv,        "\nclass:",        class      )    ),    outlier.colour = "red"  ) +  guides(fill = "none") +  theme_minimal()x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Create interactive 2d contours of a 3d surface

Description

These geometries are based onggplot2::geom_contour()andggplot2::geom_contour_filled().See the documentation for those functions for more details.

Usage

geom_contour_interactive(...)geom_contour_filled_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive contours to a ggplot -------library(ggplot2)library(ggiraph)v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))p <- v +  geom_contour_interactive(aes(    colour = after_stat(level),    tooltip = paste("Level:", after_stat(level))  ))x <- girafe(ggobj = p)if (interactive()) {  print(x)}if (packageVersion("grid") >= numeric_version("3.6")) {  p <- v +    geom_contour_filled_interactive(aes(      colour = after_stat(level),      fill = after_stat(level),      tooltip = paste("Level:", after_stat(level))    ))  x <- girafe(ggobj = p)  if (interactive()) print(x)}

Create interactive point counts

Description

The geometry is based onggplot2::geom_bin2d().See the documentation for those functions for more details.

Usage

geom_count_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive point counts to a ggplot -------library(ggplot2)library(ggiraph)p <- ggplot(mpg, aes(cty, hwy)) +  geom_count_interactive(aes(tooltip = after_stat(n)))x <- girafe(ggobj = p)if (interactive()) {  print(x)}p2 <- ggplot(diamonds, aes(x = cut, y = clarity)) +  geom_count_interactive(aes(    size = after_stat(prop),    tooltip = after_stat(round(prop, 3)),    group = 1  )) +  scale_size_area(max_size = 10)x <- girafe(ggobj = p2)if (interactive()) {  print(x)}

Create interactive vertical intervals: lines, crossbars & errorbars

Description

These geometries are based onggplot2::geom_crossbar(),ggplot2::geom_errorbar(),ggplot2::geom_linerange() andggplot2::geom_pointrange().See the documentation for those functions for more details.

Usage

geom_crossbar_interactive(...)geom_errorbar_interactive(...)geom_linerange_interactive(...)geom_pointrange_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive intervals -------library(ggplot2)library(ggiraph)# Create a simple example datasetdf <- data.frame(  trt = factor(c(1, 1, 2, 2)),  resp = c(1, 5, 3, 4),  group = factor(c(1, 2, 1, 2)),  upper = c(1.1, 5.3, 3.3, 4.2),  lower = c(0.8, 4.6, 2.4, 3.6))p <- ggplot(df, aes(trt, resp, colour = group))g <- p +  geom_linerange_interactive(aes(ymin = lower, ymax = upper, tooltip = group))x <- girafe(ggobj = g)if (interactive()) {  print(x)}g <- p +  geom_pointrange_interactive(aes(ymin = lower, ymax = upper, tooltip = group))x <- girafe(ggobj = g)if (interactive()) {  print(x)}g <- p +  geom_crossbar_interactive(    aes(ymin = lower, ymax = upper, tooltip = group),    width = 0.2  )x <- girafe(ggobj = g)if (interactive()) {  print(x)}g <- p +  geom_errorbar_interactive(    aes(ymin = lower, ymax = upper, tooltip = group),    width = 0.2  )x <- girafe(ggobj = g)if (interactive()) {  print(x)}

Create interactive line segments and curves

Description

The geometries are based onggplot2::geom_segment() andggplot2::geom_curve().See the documentation for those functions for more details.

Usage

geom_curve_interactive(...)geom_segment_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive segments and curves to a ggplot -------library(ggplot2)library(ggiraph)counts <- as.data.frame(table(x = rpois(100, 5)))counts$x <- as.numeric(as.character(counts$x))counts$xlab <- paste0("bar", as.character(counts$x))gg_segment_1 <- ggplot(  data = counts,  aes(x = x, y = Freq, yend = 0, xend = x, tooltip = xlab)) +  geom_segment_interactive(size = I(10))x <- girafe(ggobj = gg_segment_1)if (interactive()) {  print(x)}dataset = data.frame(  x = c(1, 2, 5, 6, 8),  y = c(3, 6, 2, 8, 7),  vx = c(1, 1.5, 0.8, 0.5, 1.3),  vy = c(0.2, 1.3, 1.7, 0.8, 1.4),  labs = paste0("Lab", 1:5))dataset$clickjs = paste0("alert(\"", dataset$labs, "\")")gg_segment_2 = ggplot() +  geom_segment_interactive(    data = dataset,    mapping = aes(      x = x,      y = y,      xend = x + vx,      yend = y + vy,      tooltip = labs,      onclick = clickjs    ),    arrow = grid::arrow(length = grid::unit(0.03, "npc")),    size = 2,    color = "blue"  ) +  geom_point(    data = dataset,    mapping = aes(x = x, y = y),    size = 4,    shape = 21,    fill = "white"  )x <- girafe(ggobj = gg_segment_2)if (interactive()) {  print(x)}df <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)p <- ggplot(df, aes(x = x1, y = y1, xend = x2, yend = y2)) +  geom_curve_interactive(aes(colour = "curve", tooltip = I("curve"))) +  geom_segment_interactive(aes(colour = "segment", tooltip = I("segment")))x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Create interactive contours of a 2d density estimate

Description

The geometries are based onggplot2::geom_density_2d() andggplot2::geom_density_2d_filled().See the documentation for those functions for more details.

Usage

geom_density_2d_interactive(...)geom_density_2d_filled_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive contours to a ggplot -------library(ggplot2)library(ggiraph)m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +  geom_point_interactive(aes(    tooltip = paste("Waiting:", waiting, "\neruptions:", eruptions)  )) +  xlim(0.5, 6) +  ylim(40, 110)p <- m +  geom_density_2d_interactive(aes(tooltip = paste("Level:", after_stat(level))))x <- girafe(ggobj = p)if (interactive()) {  print(x)}set.seed(4393)dsmall <- diamonds[sample(nrow(diamonds), 1000), ]d <- ggplot(dsmall, aes(x, y))p <- d +  geom_density_2d_interactive(aes(colour = cut, tooltip = cut, data_id = cut))x <- girafe(ggobj = p)x <- girafe_options(x = x, opts_hover(css = "stroke:red;stroke-width:3px;"))if (interactive()) {  print(x)}p <- d +  geom_density_2d_filled_interactive(    aes(colour = cut, tooltip = cut, data_id = cut),    contour_var = "count"  ) +  facet_wrap(vars(cut))x <- girafe(ggobj = p)x <- girafe_options(x = x, opts_hover(css = "stroke:red;stroke-width:3px;"))if (interactive()) {  print(x)}p <- d +  stat_density_2d(    aes(      fill = after_stat(nlevel),      tooltip = paste("nlevel:", after_stat(nlevel))    ),    geom = "interactive_polygon"  ) +  facet_grid(. ~ cut) +  scale_fill_viridis_c_interactive(tooltip = "nlevel")x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Create interactive smoothed density estimates

Description

The geometry is based onggplot2::geom_density().See the documentation for those functions for more details.

Usage

geom_density_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive bar -------library(ggplot2)library(ggiraph)p <- ggplot(diamonds, aes(carat)) +  geom_density_interactive(tooltip = "density", data_id = "density")x <- girafe(ggobj = p)x <- girafe_options(x = x, opts_hover(css = "stroke:orange;stroke-width:3px;"))if (interactive()) {  print(x)}p <- ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +  geom_density_interactive(aes(tooltip = cut, data_id = cut), alpha = 0.1) +  xlim(55, 70)x <- girafe(ggobj = p)x <- girafe_options(  x = x,  opts_hover(css = "stroke:yellow;stroke-width:3px;fill-opacity:0.8;"))if (interactive()) {  print(x)}p <- ggplot(diamonds, aes(carat, fill = cut)) +  geom_density_interactive(    aes(tooltip = cut, data_id = cut),    position = "stack"  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}p <- ggplot(diamonds, aes(carat, after_stat(count), fill = cut)) +  geom_density_interactive(aes(tooltip = cut, data_id = cut), position = "fill")x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Create interactive dot plots

Description

This geometry is based onggplot2::geom_dotplot().See the documentation for those functions for more details.

Usage

geom_dotplot_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive dot plots to a ggplot -------library(ggplot2)library(ggiraph)p <- ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +  geom_dotplot_interactive(    aes(tooltip = row.names(mtcars)),    stackgroups = TRUE,    binwidth = 1,    method = "histodot"  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}gg_point = ggplot(  data = mtcars,  mapping = aes(    x = factor(vs),    fill = factor(cyl),    y = mpg,    tooltip = row.names(mtcars)  )) +  geom_dotplot_interactive(    binaxis = "y",    stackdir = "center",    position = "dodge"  )x <- girafe(ggobj = gg_point)if (interactive()) {  print(x)}

Create interactive horizontal error bars

Description

This geometry is based onggplot2::geom_errorbarh().See the documentation for those functions for more details.

Usage

geom_errorbarh_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add horizontal error bars -------library(ggplot2)library(ggiraph)df <- data.frame(  trt = factor(c(1, 1, 2, 2)),  resp = c(1, 5, 3, 4),  group = factor(c(1, 2, 1, 2)),  se = c(0.1, 0.3, 0.3, 0.2))# Define the top and bottom of the errorbarsp <- ggplot(df, aes(resp, trt, colour = group))g <- p +  geom_point() +  geom_errorbarh_interactive(aes(    xmax = resp + se,    xmin = resp - se,    tooltip = group  ))x <- girafe(ggobj = g)if (interactive()) {  print(x)}

Create interactive histograms and frequency polygons

Description

The geometries are based onggplot2::geom_histogram()andggplot2::geom_freqpoly().See the documentation for those functions for more details.

This interactive version is only providing a single tooltip pergroup of data (same fordata_id). It means it is only possibleto associate a single tooltip to a set of bins.

Usage

geom_freqpoly_interactive(...)geom_histogram_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive histogram -------library(ggplot2)library(ggiraph)p <- ggplot(diamonds, aes(carat)) +  geom_histogram_interactive(    bins = 30,    aes(tooltip = after_stat(count), group = 1L)  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}p <- ggplot(diamonds, aes(price, colour = cut, tooltip = cut, data_id = cut)) +  geom_freqpoly_interactive(binwidth = 500)x <- girafe(ggobj = p)x <- girafe_options(x = x, opts_hover(css = "stroke-width:3px;"))if (interactive()) {  print(x)}

Create interactive hexagonal heatmaps

Description

The geometry is based onggplot2::geom_hex().See the documentation for those functions for more details.

Usage

geom_hex_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive hexagonal heatmaps to a ggplot -------library(ggplot2)library(ggiraph)p <- ggplot(diamonds, aes(carat, price)) +  geom_hex_interactive(aes(tooltip = after_stat(count)), bins = 10)x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Create interactive jittered points

Description

The geometry is based onggplot2::geom_jitter().See the documentation for those functions for more details.

Usage

geom_jitter_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive paths to a ggplot -------library(ggplot2)library(ggiraph)gg_jitter <- ggplot(  mpg,  aes(cyl, hwy, tooltip = paste(manufacturer, model, year, trans, sep = "\n"))) +  geom_jitter_interactive()x <- girafe(ggobj = gg_jitter)if (interactive()) {  print(x)}

Create interactive textual annotations

Description

The geometries are based onggplot2::geom_text() andggplot2::geom_label().See the documentation for those functions for more details.

Usage

geom_label_interactive(...)geom_text_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive labels to a ggplot -------library(ggplot2)library(ggiraph)library(gdtools)register_liberationsans()p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) +  geom_label_interactive(aes(    tooltip = paste(rownames(mtcars), mpg, sep = "\n")  ), family = "Liberation Sans") +  theme_minimal(base_family = "Liberation Sans", base_size = 11)x <- girafe(  ggobj = p,  dependencies = list(    liberationsansHtmlDependency()  ))if (interactive()) {  print(x)}p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) +  geom_label_interactive(    aes(fill = factor(cyl), tooltip = paste(rownames(mtcars), mpg, sep = "\n")),    colour = "white",    fontface = "bold",    family = "Liberation Sans"  ) +  theme_minimal(base_family = "Liberation Sans", base_size = 11)x <- girafe(  ggobj = p,  dependencies = list(    liberationsansHtmlDependency()  ))if (interactive()) {  print(x)}# add interactive texts to a ggplot -------library(ggplot2)library(ggiraph)library(gdtools)register_liberationsans()## the datadataset = mtcarsdataset$label = row.names(mtcars)dataset$tooltip = paste0(  "cyl: ",  dataset$cyl,  "<br/>",  "gear: ",  dataset$gear,  "<br/>",  "carb: ",  dataset$carb)## the plotgg_text = ggplot(  dataset,  aes(    x = mpg,    y = wt,    label = label,    color = qsec,    tooltip = tooltip,    data_id = label  )) +  geom_text_interactive(check_overlap = TRUE, family = "Liberation Sans") +  coord_cartesian(xlim = c(0, 50)) +  theme_minimal(base_family = "Liberation Sans", base_size = 11)## display the plotx <- girafe(  ggobj = gg_text,  dependencies = list(    liberationsansHtmlDependency()  ))x <- girafe_options(x = x, opts_hover(css = "fill:#FF4C3B;font-style:italic;"))if (interactive()) {  print(x)}

Create interactive polygons from a reference map

Description

The geometry is based onggplot2::geom_map().See the documentation for those functions for more details.

Usage

geom_map_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive maps to a ggplot -------library(ggplot2)library(ggiraph)crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)# create tooltips and onclick eventsstates_ <- sprintf("<p>%s</p>", as.character(crimes$state))table_ <- paste0(  "<table><tr><td>UrbanPop</td>",  sprintf("<td>%.0f</td>", crimes$UrbanPop),  "</tr><tr>",  "<td>Assault</td>",  sprintf("<td>%.0f</td>", crimes$Assault),  "</tr></table>")onclick <- sprintf(  "window.open(\"%s%s\")",  "http://en.wikipedia.org/wiki/",  as.character(crimes$state))crimes$labs <- paste0(states_, table_)crimes$onclick = onclickif (require("maps")) {  states_map <- map_data("state")  gg_map <- ggplot(crimes, aes(map_id = state))  gg_map <- gg_map +    geom_map_interactive(      aes(        fill = Murder,        tooltip = labs,        data_id = state,        onclick = onclick      ),      map = states_map    ) +    expand_limits(x = states_map$long, y = states_map$lat)  x <- girafe(ggobj = gg_map)  if (interactive()) print(x)}

Create interactive observations connections

Description

These geometries are based onggplot2::geom_path(),ggplot2::geom_line() andggplot2::geom_step().See the documentation for those functions for more details.

Usage

geom_path_interactive(...)geom_line_interactive(...)geom_step_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive paths to a ggplot -------library(ggplot2)library(ggiraph)# geom_line_interactive example -----if (requireNamespace("dplyr", quietly = TRUE)) {  gg <- ggplot(    economics_long,    aes(      date,      value01,      colour = variable,      tooltip = variable,      data_id = variable,      hover_css = "fill:none;"    )  ) +    geom_line_interactive(size = .75)  x <- girafe(ggobj = gg)  x <- girafe_options(x = x, opts_hover(css = "stroke:red;fill:orange"))  if (interactive()) print(x)}# geom_step_interactive example -----if (requireNamespace("dplyr", quietly = TRUE)) {  recent <- economics[economics$date > as.Date("2013-01-01"), ]  gg = ggplot(recent, aes(date, unemploy)) +    geom_step_interactive(aes(      tooltip = "Unemployement stairstep line",      data_id = 1    ))  x <- girafe(ggobj = gg)  x <- girafe_options(x = x, opts_hover(css = "stroke:red;"))  if (interactive()) print(x)}# create datasets -----id = paste0("id", 1:10)data = expand.grid(list(  variable = c("2000", "2005", "2010", "2015"),  id = id))groups = sample(LETTERS[1:3], size = length(id), replace = TRUE)data$group = groups[match(data$id, id)]data$value = runif(n = nrow(data))data$tooltip = paste0('line ', data$id)data$onclick = paste0("alert(\"", data$id, "\")")cols = c("orange", "orange1", "orange2", "navajowhite4", "navy")dataset2 <- data.frame(  x = rep(1:20, 5),  y = rnorm(100, 5, .2) + rep(1:5, each = 20),  z = rep(1:20, 5),  grp = factor(rep(1:5, each = 20)),  color = factor(rep(1:5, each = 20)),  label = rep(paste0("id ", 1:5), each = 20),  onclick = paste0(    "alert(\"",    sample(letters, 100, replace = TRUE),    "\")"  ))# plots ---gg_path_1 = ggplot(  data,  aes(    variable,    value,    group = id,    colour = group,    tooltip = tooltip,    onclick = onclick,    data_id = id  )) +  geom_path_interactive(alpha = 0.5)gg_path_2 = ggplot(  data,  aes(variable, value, group = id, data_id = id, tooltip = tooltip)) +  geom_path_interactive(alpha = 0.5) +  facet_wrap(~group)gg_path_3 = ggplot(dataset2) +  geom_path_interactive(    aes(      x,      y,      group = grp,      data_id = label,      color = color,      tooltip = label,      onclick = onclick    ),    size = 1  )# ggiraph widgets ---x <- girafe(ggobj = gg_path_1)x <- girafe_options(x = x, opts_hover(css = "stroke-width:3px;"))if (interactive()) {  print(x)}x <- girafe(ggobj = gg_path_2)x <- girafe_options(x = x, opts_hover(css = "stroke:orange;stroke-width:3px;"))if (interactive()) {  print(x)}x <- girafe(ggobj = gg_path_3)x <- girafe_options(x = x, opts_hover(css = "stroke-width:10px;"))if (interactive()) {  print(x)}m <- ggplot(economics, aes(unemploy / pop, psavert))p <- m + geom_path_interactive(aes(colour = as.numeric(date), tooltip = date))x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Create interactive points

Description

The geometry is based onggplot2::geom_point().See the documentation for those functions for more details.

Usage

geom_point_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

Note

The following shapes id 3, 4 and 7 to 14 are composite symbols and should not be used.

See Also

girafe()

Examples

# add interactive points to a ggplot -------library(ggplot2)library(ggiraph)library(gdtools)register_liberationsans()dataset <- structure(  list(    qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22),    disp = c(160, 160, 108, 258, 360, 225),    carname = c(      "Mazda RX4",      "Mazda RX4 Wag",      "Datsun 710",      "Hornet 4 Drive",      "Hornet Sportabout",      "Valiant"    ),    wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46)  ),  row.names = c(    "Mazda RX4",    "Mazda RX4 Wag",    "Datsun 710",    "Hornet 4 Drive",    "Hornet Sportabout",    "Valiant"  ),  class = "data.frame")dataset# plotsgg_point = ggplot(data = dataset) +  geom_point_interactive(aes(    x = wt,    y = qsec,    color = disp,    tooltip = carname,    data_id = carname  )) +  theme_minimal(base_family = "Liberation Sans", base_size = 11)x <- girafe(  ggobj = gg_point,  dependencies = list(    liberationsansHtmlDependency()  ))if (interactive()) {  print(x)}

Create interactive polygons

Description

The geometry is based onggplot2::geom_polygon().See the documentation for those functions for more details.

Usage

geom_polygon_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive polygons to a ggplot -------library(ggplot2)library(ggiraph)# create dataids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))values <- data.frame(  id = ids,  value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5))positions <- data.frame(  id = rep(ids, each = 4),  x = c(    2,    1,    1.1,    2.2,    1,    0,    0.3,    1.1,    2.2,    1.1,    1.2,    2.5,    1.1,    0.3,    0.5,    1.2,    2.5,    1.2,    1.3,    2.7,    1.2,    0.5,    0.6,    1.3  ),  y = c(    -0.5,    0,    1,    0.5,    0,    0.5,    1.5,    1,    0.5,    1,    2.1,    1.7,    1,    1.5,    2.2,    2.1,    1.7,    2.1,    3.2,    2.8,    2.1,    2.2,    3.3,    3.2  ))datapoly <- merge(values, positions, by = c("id"))datapoly$oc = "alert(this.getAttribute(\"data-id\"))"# create a ggplot -----gg_poly_1 <- ggplot(datapoly, aes(x = x, y = y)) +  geom_polygon_interactive(aes(    fill = value,    group = id,    tooltip = value,    data_id = value,    onclick = oc  ))# display ------x <- girafe(ggobj = gg_poly_1)if (interactive()) {  print(x)}if (packageVersion("grid") >= "3.6") {  # As of R version 3.6 geom_polygon() supports polygons with holes  # Use the subgroup aesthetic to differentiate holes from the main polygon  holes <- do.call(    rbind,    lapply(split(datapoly, datapoly$id), function(df) {      df$x <- df$x + 0.5 * (mean(df$x) - df$x)      df$y <- df$y + 0.5 * (mean(df$y) - df$y)      df    })  )  datapoly$subid <- 1L  holes$subid <- 2L  datapoly <- rbind(datapoly, holes)  p <- ggplot(datapoly, aes(x = x, y = y)) +    geom_polygon_interactive(aes(      fill = value,      group = id,      subgroup = subid,      tooltip = value,      data_id = value,      onclick = oc    ))  x <- girafe(ggobj = p)  if (interactive()) print(x)}

Create interactive quantile regression

Description

The geometry is based onggplot2::geom_quantile().See the documentation for those functions for more details.

Usage

geom_quantile_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive quantiles to a ggplot -------library(ggplot2)library(ggiraph)if (requireNamespace("quantreg", quietly = TRUE)) {  m <- ggplot(mpg, aes(displ, 1 / hwy)) + geom_point()  p <- m +    geom_quantile_interactive(      aes(        tooltip = after_stat(quantile),        data_id = after_stat(quantile),        colour = after_stat(quantile)      ),      formula = y ~ x,      size = 2,      alpha = 0.5    )  x <- girafe(ggobj = p)  x <- girafe_options(x = x, opts_hover(css = "stroke:red;stroke-width:10px;"))  if (interactive()) print(x)}

Create interactive quasirandom geom

Description

The geometry is based onggbeeswarm::geom_quasirandom().

Usage

geom_quasirandom_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive repulsive texts to a ggplot -------library(ggplot2)library(ggiraph)# geom_text_repel_interactiveif (  requireNamespace("ggbeeswarm", quietly = TRUE) &&    requireNamespace("dplyr", quietly = TRUE)) {  set.seed(2)  dat <- dplyr::filter(    .data = diamonds,    cut %in% c("Fair", "Good"),    color %in% c("D", "E", "H")  )  dat <- dplyr::sample_n(tbl = dat, 150)  dodge_width <- .8  position <- position_dodge(width = dodge_width)  gg_qr <- ggplot(dat, aes(x = cut, y = y, fill = color)) +    geom_violin(      alpha = .5,      width = dodge_width    ) +    geom_boxplot(position = position, alpha = .5, outliers = FALSE) +    geom_quasirandom_interactive(      aes(tooltip = y, data_id = color),      shape = 21,      size = 2,      dodge.width = dodge_width,      color = "black",      alpha = .5    ) +    theme_minimal()  x <- girafe(ggobj = gg_qr)  x <- girafe_options(x = x, opts_hover(css = "fill:#FF4C3B;"))  if (interactive()) print(x)  dat <- mtcars  dat$name <- row.names(mtcars)  dat$am <- factor(dat$am)  dat$gear <- factor(dat$gear)  dodge_width <- .8  position <- position_dodge(width = dodge_width)  gg_qr <- ggplot(dat, aes(x = am, y = disp, fill = gear, group = interaction(am, gear))) +    geom_quasirandom_interactive(      aes(tooltip = disp, data_id = name),      shape = 21,      size = 2,      dodge.width = dodge_width,      color = "black"    ) +    scale_fill_manual_interactive(      name = label_interactive(        "Gearrrrrr",        tooltip = "Gearrrrrr",        data_id = "gear"      ),      values = c("3" = "#0072B2", "4" = "#009E73", "5" = "red"),      data_id = c("3" = "tree", "4" = "tree", "5" = "four"),      tooltip = c("3" = "tree", "4" = "tree", "5" = "four")    ) +    theme_minimal()  x <- girafe(ggobj = gg_qr)  if (interactive()) print(x)}

Create interactive raster rectangles

Description

The geometry is based onggplot2::geom_raster().See the documentation for those functions for more details.

Usage

geom_raster_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

girafe()

Examples

# add interactive raster to a ggplot -------library(ggplot2)library(ggiraph)df <- expand.grid(x = 0:5, y = 0:5)df$z <- runif(nrow(df))gg <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +  geom_raster_interactive() +  scale_fill_gradient_interactive(    data_id = "coco",    onclick = "cici",    tooltip = "cucu"  )x <- girafe(ggobj = gg)if (interactive()) {  print(x)}

Create interactive rectangles

Description

These geometries are based onggplot2::geom_rect() andggplot2::geom_tile().See the documentation for those functions for more details.

Usage

geom_rect_interactive(...)geom_tile_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

Note

Converting a raster to svg elements could inflate dramatically the size of thesvg and make it unreadable in a browser.Functiongeom_tile_interactive should be used with caution, total number ofrectangles should be small.

See Also

girafe()

Examples

# add interactive polygons to a ggplot -------library(ggplot2)library(ggiraph)dataset = data.frame(  x1 = c(1, 3, 1, 5, 4),  x2 = c(2, 4, 3, 6, 6),  y1 = c(1, 1, 4, 1, 3),  y2 = c(2, 2, 5, 3, 5),  t = c('a', 'a', 'a', 'b', 'b'),  r = c(1, 2, 3, 4, 5),  tooltip = c("ID 1", "ID 2", "ID 3", "ID 4", "ID 5"),  uid = c("ID 1", "ID 2", "ID 3", "ID 4", "ID 5"),  oc = rep("alert(this.getAttribute(\"data-id\"))", 5))gg_rect = ggplot() +  scale_x_continuous(name = "x") +  scale_y_continuous(name = "y") +  geom_rect_interactive(    data = dataset,    mapping = aes(      xmin = x1,      xmax = x2,      ymin = y1,      ymax = y2,      fill = t,      tooltip = tooltip,      onclick = oc,      data_id = uid    ),    color = "black",    alpha = 0.5,    linejoin = "bevel",    lineend = "round"  ) +  geom_text(    data = dataset,    aes(x = x1 + (x2 - x1) / 2, y = y1 + (y2 - y1) / 2, label = r),    size = 4  )x <- girafe(ggobj = gg_rect)if (interactive()) {  print(x)}# add interactive tiles to a ggplot -------library(ggplot2)library(ggiraph)df <- data.frame(  id = rep(c("a", "b", "c", "d", "e"), 2),  x = rep(c(2, 5, 7, 9, 12), 2),  y = rep(c(1, 2), each = 5),  z = factor(rep(1:5, each = 2)),  w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2))p <- ggplot(df, aes(x, y, tooltip = id)) + geom_tile_interactive(aes(fill = z))x <- girafe(ggobj = p)if (interactive()) {  print(x)}# correlation dataset ----cor_mat <- cor(mtcars)diag(cor_mat) <- NAvar1 <- rep(row.names(cor_mat), ncol(cor_mat))var2 <- rep(colnames(cor_mat), each = nrow(cor_mat))cor <- as.numeric(cor_mat)cor_mat <- data.frame(  var1 = var1,  var2 = var2,  cor = cor,  stringsAsFactors = FALSE)cor_mat[["tooltip"]] <-  sprintf("<i>`%s`</i> vs <i>`%s`</i>:</br><code>%.03f</code>", var1, var2, cor)p <- ggplot(data = cor_mat, aes(x = var1, y = var2)) +  geom_tile_interactive(aes(fill = cor, tooltip = tooltip), colour = "white") +  scale_fill_gradient2_interactive(    low = "#BC120A",    mid = "white",    high = "#BC120A",    limits = c(-1, 1),    data_id = "cormat",    tooltip = "cormat"  ) +  coord_equal()x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Create interactive ribbons and area plots

Description

The geometries are based onggplot2::geom_ribbon() andggplot2::geom_area().See the documentation for those functions for more details.

Usage

geom_ribbon_interactive(...)geom_area_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive bar -------library(ggplot2)library(ggiraph)# Generate datahuron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))h <- ggplot(huron, aes(year))g <- h +  geom_ribbon_interactive(    aes(ymin = level - 1, ymax = level + 1),    fill = "grey70",    tooltip = "ribbon1",    data_id = "ribbon1",    outline.type = "both",    hover_css = "stroke:red;stroke-width:inherit;"  ) +  geom_line_interactive(    aes(y = level),    tooltip = "level",    data_id = "line1",    hover_css = "stroke:orange;fill:none;"  )x <- girafe(ggobj = g)x <- girafe_options(  x = x,  opts_hover(    css = girafe_css(      css = "stroke:orange;stroke-width:3px;",      area = "fill:blue;"    )  ))if (interactive()) {  print(x)}g <- h + geom_area_interactive(aes(y = level), tooltip = "area1")x <- girafe(ggobj = g)if (interactive()) {  print(x)}

Create interactive sf objects

Description

These geometries are based onggplot2::geom_sf(),ggplot2::geom_sf_label()andggplot2::geom_sf_text(). See the documentation for those functions formore details.

Usage

geom_sf_interactive(...)geom_sf_label_interactive(...)geom_sf_text_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive sf objects to a ggplot -------library(ggplot2)library(ggiraph)## original code: see section examples of ggplot2::geom_sf help fileif (  requireNamespace(    "sf",    quietly = TRUE,    versionCheck = list(op = ">=", version = "0.7-3")  )) {  nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)  gg <- ggplot(nc) +    geom_sf_interactive(aes(fill = AREA, tooltip = NAME, data_id = NAME))  x <- girafe(ggobj = gg)  if (interactive()) {    print(x)  }  nc_3857 <- sf::st_transform(nc, 3857)  # Unfortunately if you plot other types of feature you'll need to use  # show.legend to tell ggplot2 what type of legend to use  nc_3857$mid <- sf::st_centroid(nc_3857$geometry)  gg <- ggplot(nc_3857) +    geom_sf(colour = "white") +    geom_sf_interactive(      aes(geometry = mid, size = AREA, tooltip = NAME, data_id = NAME),      show.legend = "point"    )  x <- girafe(ggobj = gg)  if (interactive()) {    print(x)  }  # Example with texts.  gg <- ggplot(nc_3857[1:3, ]) +    geom_sf(aes(fill = AREA)) +    geom_sf_text_interactive(aes(label = NAME, tooltip = NAME), color = "white")  x <- girafe(ggobj = gg)  if (interactive()) {    print(x)  }  # Example with labels.  gg <- ggplot(nc_3857[1:3, ]) +    geom_sf(aes(fill = AREA)) +    geom_sf_label_interactive(aes(label = NAME, tooltip = NAME))  x <- girafe(ggobj = gg)  if (interactive()) print(x)}

Create interactive smoothed conditional means

Description

The geometry is based onggplot2::geom_smooth().See the documentation for those functions for more details.

Usage

geom_smooth_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive bar -------library(ggplot2)library(ggiraph)p <- ggplot(mpg, aes(displ, hwy)) +  geom_point() +  geom_smooth_interactive(aes(tooltip = "smoothed line", data_id = "smooth"))x <- girafe(ggobj = p)x <- girafe_options(x = x, opts_hover(css = "stroke:orange;stroke-width:3px;"))if (interactive()) {  print(x)}p <- ggplot(mpg, aes(displ, hwy)) +  geom_point() +  geom_smooth_interactive(    method = lm,    se = FALSE,    tooltip = "smooth",    data_id = "smooth"  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}p <- ggplot(  mpg,  aes(displ, hwy, colour = class, tooltip = class, data_id = class)) +  geom_point_interactive() +  geom_smooth_interactive(se = FALSE, method = lm)x <- girafe(ggobj = p)x <- girafe_options(x = x, opts_hover(css = "stroke:red;stroke-width:3px;"))if (interactive()) {  print(x)}

Create interactive line segmentsparameterised by location, direction and distance

Description

The geometry is based onggplot2::geom_spoke().See the documentation for those functions for more details.

Usage

geom_spoke_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive line segments parameterised by location,# direction and distance to a ggplot -------library(ggplot2)library(ggiraph)df <- expand.grid(x = 1:10, y = 1:10)df$angle <- runif(100, 0, 2 * pi)df$speed <- runif(100, 0, sqrt(0.1 * df$x))p <- ggplot(df, aes(x, y)) +  geom_point() +  geom_spoke_interactive(    aes(angle = angle, tooltip = round(angle, 2)),    radius = 0.5  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}p2 <- ggplot(df, aes(x, y)) +  geom_point() +  geom_spoke_interactive(aes(    angle = angle,    radius = speed,    tooltip = paste(round(angle, 2), round(speed, 2), sep = "\n")  ))x2 <- girafe(ggobj = p2)if (interactive()) {  print(x2)}

Create interactive repulsive textual annotations

Description

The geometries are based onggrepel::geom_text_repel() andggrepel::geom_label_repel().See the documentation for those functions for more details.

Usage

geom_text_repel_interactive(...)geom_label_repel_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

Note

Theggrepel package is required for these geometries

See Also

girafe()

Examples

# add interactive repulsive texts to a ggplot -------library(ggplot2)library(ggiraph)# geom_text_repel_interactiveif (requireNamespace("ggrepel", quietly = TRUE)) {  dataset = mtcars  dataset$label = row.names(mtcars)  dataset$tooltip = paste0(    dataset$label,    "<br/>",    "cyl: ",    dataset$cyl,    "<br/>",    "gear: ",    dataset$gear,    "<br/>",    "carb: ",    dataset$carb  )  p <- ggplot(dataset, aes(wt, mpg, color = qsec)) +    geom_point_interactive(aes(tooltip = tooltip, data_id = label))  gg_text = p +    geom_text_repel_interactive(      aes(label = label, tooltip = tooltip, data_id = label),      size = 3    )  x <- girafe(ggobj = gg_text)  x <- girafe_options(x = x, opts_hover(css = "fill:#FF4C3B;"))  if (interactive()) print(x)}# geom_label_repel_interactiveif (requireNamespace("ggrepel", quietly = TRUE)) {  gg_label = p +    geom_label_repel_interactive(      aes(label = label, tooltip = tooltip, data_id = label),      size = 3,      max.overlaps = 12    )  x2 <- girafe(ggobj = gg_label)  x2 <- girafe_options(    x = x2,    opts_hover(      css = ggiraph::girafe_css(        css = ";",        area = "fill:#FF4C3B;"      )    )  )  if (interactive()) print(x2)}

Create interactive violin plot

Description

The geometry is based onggplot2::geom_violin().See the documentation for those functions for more details.

Usage

geom_violin_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

See Also

girafe()

Examples

# add interactive violin plot -------library(ggplot2)library(ggiraph)p <- ggplot(mtcars, aes(factor(cyl), mpg)) +  geom_violin_interactive(aes(fill = cyl, tooltip = cyl))x <- girafe(ggobj = p)if (interactive()) {  print(x)}# Show quartilesp2 <- ggplot(mtcars, aes(factor(cyl), mpg)) +  geom_violin_interactive(    aes(tooltip = after_stat(density)),    draw_quantiles = c(0.25, 0.5, 0.75)  )x2 <- girafe(ggobj = p2)if (interactive()) {  print(x2)}

Create a ggiraph object (defunct)

Description

Create an interactive graphic to be used in a web browser.

This function is now defunct, users shouldnow use functiongirafe().

Usage

ggiraph(...)

Arguments

...

unused


Create a ggiraph output element

Description

Render a ggiraph within an application page.

This function is now defunct, users shouldnow use functiongirafeOutput().

Usage

ggiraphOutput(...)

Arguments

...

unused


Create a girafe object

Description

Create an interactive graphic with a ggplot objectto be used in a web browser.

Usage

girafe(  code,  ggobj = NULL,  pointsize = 12,  width_svg = NULL,  height_svg = NULL,  options = list(),  dependencies = NULL,  check_fonts_registered = FALSE,  check_fonts_dependencies = FALSE,  ...)

Arguments

code

Plotting code to execute

ggobj

ggplot object to print. Argumentcode willbe ignored if this argument is supplied.

pointsize

the default pointsize of plotted text in pixels, default to 12.

width_svg,height_svg

The width and height of the graphics region in inches.The default values are 6 and 5 inches. This will define the aspect ratio of thegraphic as it will be used to define viewbox attribute of the SVG result.

If you usegirafe() in an 'R Markdown' document, werecommend not using these arguments so that the knitroptionsfig.width andfig.height are used instead.

options

a list of options for girafe rendering, seeopts_tooltip(),opts_hover(),opts_selection(), ...

dependencies

Additional widget HTML dependencies, seehtmlwidgets::createWidget().

check_fonts_registered

whether to check if fonts families found inthe ggplot are registered with 'systemfonts'.

check_fonts_dependencies

whether to check if fonts families found inthe ggplot are found in thedependencies list.

...

arguments passed on todsvg()

Details

Usegeom_zzz_interactive to create interactive graphical elements.

Tooltips can be displayed when mouse is over graphical elements.

If id are associated with points, they get animated when mouse isover and can be selected when used in shiny apps.

On click actions can be set with javascript instructions. This optionshould not be used simultaneously with selections in Shinyapplications as both features are "on click" features.

When a zoom effect is set, "zoom activate", "zoom desactivate" and"zoom init" buttons are available in a toolbar.

When selection type is set to 'multiple' (in Shiny applications), lassoselection and lasso anti-selections buttons are available in a toolbar.

Managing Grouping with Interactive Aesthetics

Adding an interactive aesthetic liketooltip can sometimes alter the implicitgrouping that ggplot2 performs automatically.

In these cases, youmust explicitly specify thegroup aesthetic to ensurecorrect graph rendering by clearly defining the variables that determine thegrouping.

mapping = ggplot2::aes(tooltip = .data_tooltip, group = interaction(factor1, factor2, ...))

This precaution is necessary:

Widget options

girafe animations can be customized with functiongirafe_options().Options are available to customize tooltips, hover effects, zoom effectsselection effects and toolbar.

Widget sizing

girafe graphics are responsive, which mean, they will be resizedaccording to their container. There are two responsive behaviorimplementations:

Graphics are created by an R graphic device (i.e pdf, png, svg here) andneed arguments width and height to define a graphic region.Argumentswidth_svg andheight_svg are used as correspondingvalues. They are defining the aspect ratio of the graphic. This proportion isalways respected when the graph is displayed.

When a girafe graphic is in a Shiny application,graphic will be resized according to the argumentswidth andheight of the functiongirafeOutput. Defaultvalues are '100\outer bounding box of the graphic (the HTML element that willcontain the graphic with an aspect ratio).

When a girafe graphic is in an R markdown document (producing an HTMLdocument), the graphic will be resized according to the argumentwidth of thefunctiongirafe. Its value is beeing used to define a relativewidth of the graphic within its HTML container. Its height is automaticallyadjusted regarding to the argumentwidth and the aspect ratio.

See Also

girafe_options(),validated_fonts(),dsvg()

Examples

library(ggplot2)library(ggiraph)library(gdtools)register_liberationsans()dataset <- mtcarsdataset$carname <- row.names(mtcars)gg_point <- ggplot(  data = dataset,  mapping = aes(    x = wt, y = qsec, color = disp,    tooltip = carname, data_id = carname  )) +  geom_point_interactive(hover_nearest = TRUE, size = 11/.pt) +  theme_minimal(base_family = "Liberation Sans", base_size = 11)x <- girafe(  ggobj = gg_point,  dependencies = list(    liberationsansHtmlDependency()  ))x

Create a girafe output element

Description

Render a girafe within an application page.

Usage

girafeOutput(outputId, width = "100%", height = NULL)

Arguments

outputId

output variable to read the girafe from. Do not use special JavaScriptcharacters such as a period. in the id, this would create a JavaScript error.

width

widget width, its default value is set so that the graphic cancover the entire available horizontal space.

height

widget height, its default value is NULL so that widthadaptation is not restricted. The height will then be defined accordingto the width used and the aspect ratio. Only use a value for the heightif you have a specific reason and want to strictly control the size.

Size control

If you want to control a fixed size, useopts_sizing(rescale = FALSE) and set the chart sizewithgirafe(width_svg=..., height_svg=...).

If you wantthe graphic to fit the available width,useopts_sizing(rescale = TRUE) and set the size of thegraphic withgirafe(width_svg=..., height_svg=...), thissize will define the aspect ratio.


CSS creation helper

Description

It allows specifying individual styles for various SVG elements.

Usage

girafe_css(  css,  text = NULL,  point = NULL,  line = NULL,  area = NULL,  image = NULL)

Arguments

css

The generic css style

text

Override style for text elements (svg:text)

point

Override style for point elements (svg:circle)

line

Override style for line elements (svg:line, svg:polyline)

area

Override style for area elements (svg:rect, svg:polygon, svg:path)

image

Override style for image elements (svg:image)

Value

css as scalar character

See Also

girafe_css_bicolor(),girafe()

Examples

library(ggiraph)girafe_css(  css = "fill:orange;stroke:gray;",  text = "stroke:none; font-size: larger",  line = "fill:none",  area = "stroke-width:3px",  point = "stroke-width:3px",  image = "outline:2px red")

Helper for a 'girafe' css string

Description

It allows the creation of a css set of individualstyles for animation of 'girafe' elements. The used model isbased on a simple pattern that worksmost of the time forgirafe hover effects and selection effects.

It sets properties based on a primary and a secondary color.

Usage

girafe_css_bicolor(primary = "orange", secondary = "gray")

Arguments

primary,secondary

colors used to define animations offill and stroke properties with text, lines, areas, pointsand images in 'girafe' outputs.

See Also

girafe_css(),girafe()

Examples

library(ggplot2)library(ggiraph)dat <- mtcarsdat$id <- "id"dat$label <- "a line"dat <- dat[order(dat$wt), ]p <- ggplot(  data = dat,  mapping = aes(    x = wt, y = mpg, data_id = id, tooltip = label)) +  geom_line_interactive(color = "white", size  = .75,                        hover_nearest = TRUE) +  theme_dark() +  theme(plot.background = element_rect(fill="black"),        panel.background = element_rect(fill="black"),        text = element_text(colour = "white"),        axis.text = element_text(colour = "white")        )x <- girafe(  ggobj = p,  options = list(    opts_hover(      css = girafe_css_bicolor(        primary = "yellow", secondary = "black"))))if (interactive()) print(x)

Get girafe defaults formatting properties

Description

The current formatting propertiesare automatically applied to every girafe you produce.These default values are returned by this function.

Usage

girafe_defaults(name = NULL)

Arguments

name

optional, option's name to return, one of'fonts', 'opts_sizing', 'opts_tooltip', 'opts_hover', 'opts_hover_key','opts_hover_inv', 'opts_hover_theme', 'opts_selection','opts_selection_inv', 'opts_selection_key', 'opts_selection_theme','opts_zoom', 'opts_toolbar'.

Value

a list containing default values or anelement selected with argumentname.

See Also

Other girafe animation options:girafe_options(),init_girafe_defaults(),opts_hover(),opts_selection(),opts_sizing(),opts_toolbar(),opts_tooltip(),opts_zoom(),set_girafe_defaults()

Examples

girafe_defaults()

Set girafe options

Description

Defines the animation options related toagirafe() object.

Usage

girafe_options(x, ...)

Arguments

x

girafe object.

...

set of options defined by calls toopts_* functions orto sizingPolicy from htmlwidgets (this won't have any effect within ashiny context).

See Also

girafe(),girafe_css(),girafe_css_bicolor()

Other girafe animation options:girafe_defaults(),init_girafe_defaults(),opts_hover(),opts_selection(),opts_sizing(),opts_toolbar(),opts_tooltip(),opts_zoom(),set_girafe_defaults()

Examples

library(ggplot2)library(htmlwidgets)dataset <- mtcarsdataset$carname = row.names(mtcars)gg_point = ggplot( data = dataset,    mapping = aes(x = wt, y = qsec, color = disp,    tooltip = carname, data_id = carname) ) +  geom_point_interactive() + theme_minimal()x <- girafe(ggobj = gg_point)x <- girafe_options(x = x,    opts_tooltip(opacity = .7),    opts_zoom(min = .5, max = 4),    sizingPolicy(defaultWidth = "100%", defaultHeight = "300px"),    opts_hover(css = "fill:red;stroke:orange;r:5pt;") )if(interactive()){  print(x)}

Create interactive bins guide

Description

The guide is based onggplot2::guide_bins().See the documentation for that function for more details.

Usage

guide_bins_interactive(...)

Arguments

...

arguments passed to base function.

Value

An interactive guide object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

interactive_parameters,girafe()

Examples

# add interactive bins guide to a ggplot -------library(ggplot2)library(ggiraph)set.seed(4393)dsmall <- diamonds[sample(nrow(diamonds), 1000), ]p <- ggplot(dsmall, aes(x, y)) +  stat_density_2d(    aes(      fill = after_stat(nlevel),      tooltip = paste("nlevel:", after_stat(nlevel))    ),    geom = "interactive_polygon"  ) +  facet_grid(. ~ cut)# add interactive binned scale and guidep1 <- p +  scale_fill_viridis_b_interactive(    data_id = "nlevel",    tooltip = "nlevel",    guide = "bins"  )x <- girafe(ggobj = p1)if (interactive()) {  print(x)}# set the keys separatelyp2 <- p +  scale_fill_viridis_b_interactive(    data_id = function(breaks) {      sapply(seq_along(breaks), function(i) {        if (i < length(breaks)) {          paste(            min(breaks[i], breaks[i + 1], na.rm = TRUE),            max(breaks[i], breaks[i + 1], na.rm = TRUE),            sep = "-"          )        } else {          NA_character_        }      })    },    tooltip = function(breaks) {      sapply(seq_along(breaks), function(i) {        if (i < length(breaks)) {          paste(            min(breaks[i], breaks[i + 1], na.rm = TRUE),            max(breaks[i], breaks[i + 1], na.rm = TRUE),            sep = "-"          )        } else {          NA_character_        }      })    },    guide = "bins"  )x <- girafe(ggobj = p2)if (interactive()) {  print(x)}# # make the title and labels interactive# p3 <- p +#   scale_fill_viridis_c_interactive(#     data_id = function(breaks) {#       sapply(seq_along(breaks), function(i) {#         if (i < length(breaks)) {#           paste(#             min(breaks[i], breaks[i + 1], na.rm = TRUE),#             max(breaks[i], breaks[i + 1], na.rm = TRUE),#             sep = "-"#           )#         } else {#           NA_character_#         }#       })#     },#     tooltip = function(breaks) {#       sapply(seq_along(breaks), function(i) {#         if (i < length(breaks)) {#           paste(#             min(breaks[i], breaks[i + 1], na.rm = TRUE),#             max(breaks[i], breaks[i + 1], na.rm = TRUE),#             sep = "-"#           )#         } else {#           NA_character_#         }#       })#     },#     guide = "bins",#     name = label_interactive("nlevel", data_id = "nlevel", tooltip = "nlevel"),#     labels = function(breaks) {#       label_interactive(#         as.character(breaks),#         data_id = as.character(breaks),#         onclick = paste0("alert(\"", as.character(breaks), "\")"),#         tooltip = as.character(breaks)#       )#     }#   )# x <- girafe(ggobj = p3)# x <- girafe_options(#   x,#   opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))# )# if (interactive()) {#   print(x)# }

Create interactive continuous colour bar guide

Description

The guide is based onggplot2::guide_colourbar().See the documentation for that function for more details.

Usage

guide_colourbar_interactive(...)guide_colorbar_interactive(...)

Arguments

...

arguments passed to base function.

Value

An interactive guide object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

interactive_parameters,girafe()

Examples

# add interactive colourbar guide to a ggplot -------library(ggplot2)library(ggiraph)df <- expand.grid(x = 0:5, y = 0:5)df$z <- runif(nrow(df))p <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +  geom_raster_interactive()# add an interactive scale (guide is colourbar)p1 <- p +  scale_fill_gradient_interactive(    data_id = "colourbar",    onclick = "alert(\"colourbar\")",    tooltip = "colourbar"  )x <- girafe(ggobj = p1)if (interactive()) {  print(x)}# make the legend title interactivep2 <- p +  scale_fill_gradient_interactive(    data_id = "colourbar",    onclick = "alert(\"colourbar\")",    tooltip = "colourbar",    name = label_interactive(      "z",      data_id = "colourbar",      onclick = "alert(\"colourbar\")",      tooltip = "colourbar"    )  )x <- girafe(ggobj = p2)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# make the legend labels interactivep3 <- p +  scale_fill_gradient_interactive(    data_id = "colourbar",    onclick = "alert(\"colourbar\")",    tooltip = "colourbar",    name = label_interactive(      "z",      data_id = "colourbar",      onclick = "alert(\"colourbar\")",      tooltip = "colourbar"    ),    labels = function(breaks) {      lapply(breaks, function(abreak) {        label_interactive(          as.character(abreak),          data_id = paste0("colourbar", abreak),          onclick = "alert(\"colourbar\")",          tooltip = paste0("colourbar", abreak)        )      })    }  )x <- girafe(ggobj = p3)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# also via the guidep4 <- p +  scale_fill_gradient_interactive(    data_id = "colourbar",    onclick = "alert(\"colourbar\")",    tooltip = "colourbar",    guide = guide_colourbar_interactive(      title.theme = element_text_interactive(        size = 8,        data_id = "colourbar",        onclick = "alert(\"colourbar\")",        tooltip = "colourbar"      ),      label.theme = element_text_interactive(        size = 8,        data_id = "colourbar",        onclick = "alert(\"colourbar\")",        tooltip = "colourbar"      )    )  )x <- girafe(ggobj = p4)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# make the legend background interactivep5 <- p4 +  theme(    legend.background = element_rect_interactive(      data_id = "colourbar",      onclick = "alert(\"colourbar\")",      tooltip = "colourbar"    )  )x <- girafe(ggobj = p5)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}

Create interactive colorsteps guide

Description

The guide is based onggplot2::guide_coloursteps().See the documentation for that function for more details.

Usage

guide_coloursteps_interactive(...)guide_colorsteps_interactive(...)

Arguments

...

arguments passed to base function.

Value

An interactive guide object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

interactive_parameters,girafe()

Examples

# add interactive coloursteps guide to a ggplot -------library(ggplot2)library(ggiraph)set.seed(4393)dsmall <- diamonds[sample(nrow(diamonds), 1000), ]p <- ggplot(dsmall, aes(x, y)) +  stat_density_2d(    aes(      fill = after_stat(nlevel),      tooltip = paste("nlevel:", after_stat(nlevel))    ),    geom = "interactive_polygon"  ) +  facet_grid(. ~ cut)# add interactive binned scale, by default the guide is colorstepsp1 <- p +  scale_fill_viridis_b_interactive(data_id = "nlevel", tooltip = "nlevel")x <- girafe(ggobj = p1)if (interactive()) {  print(x)}# make the title and labels interactivep2 <- p +  scale_fill_viridis_b_interactive(    data_id = "nlevel",    tooltip = "nlevel",    name = label_interactive("nlevel", data_id = "nlevel", tooltip = "nlevel"),    labels = function(breaks) {      l <- lapply(breaks, function(br) {        label_interactive(          as.character(br),          data_id = as.character(br),          onclick = paste0("alert(\"", as.character(br), "\")"),          tooltip = as.character(br)        )      })      l    }  )x <- girafe(ggobj = p2)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}

Create interactive legend guide

Description

The guide is based onggplot2::guide_legend().See the documentation for that function for more details.

Usage

guide_legend_interactive(...)

Arguments

...

arguments passed to base function.

Value

An interactive guide object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

interactive_parameters,girafe()

Examples

# add interactive discrete legend guide to a ggplot -------library(ggplot2)library(ggiraph)dat <- data.frame(  name = c("Guy", "Ginette", "David", "Cedric", "Frederic"),  gender = c("Male", "Female", "Male", "Male", "Male"),  height = c(169, 160, 171, 172, 171))p <- ggplot(dat, aes(x = name, y = height, fill = gender, data_id = name)) +  geom_bar_interactive(stat = "identity")# add interactive scale (guide is legend)p1 <- p +  scale_fill_manual_interactive(    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = c(Female = "Female", Male = "Male"),    tooltip = c(Male = "Male", Female = "Female")  )x <- girafe(ggobj = p1)if (interactive()) {  print(x)}# make the title interactive toop2 <- p +  scale_fill_manual_interactive(    name = label_interactive(      "gender",      tooltip = "Gender levels",      data_id = "legend.title"    ),    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = c(Female = "Female", Male = "Male"),    tooltip = c(Male = "Male", Female = "Female")  )x <- girafe(ggobj = p2)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# the interactive params can be functions toop3 <- p +  scale_fill_manual_interactive(    name = label_interactive(      "gender",      tooltip = "Gender levels",      data_id = "legend.title"    ),    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    onclick = function(breaks) {      paste0("alert(\"", as.character(breaks), "\")")    }  )x <- girafe(ggobj = p3)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# also via the guidep4 <- p +  scale_fill_manual_interactive(    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    onclick = function(breaks) {      paste0("alert(\"", as.character(breaks), "\")")    },    guide = guide_legend_interactive(      title.theme = element_text_interactive(        size = 8,        data_id = "legend.title",        onclick = "alert(\"Gender levels\")",        tooltip = "Gender levels"      ),      label.theme = element_text_interactive(        size = 8      )    )  )x <- girafe(ggobj = p4)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# make the legend labels interactivep5 <- p +  scale_fill_manual_interactive(    name = label_interactive(      "gender",      tooltip = "Gender levels",      data_id = "legend.title"    ),    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    onclick = function(breaks) {      paste0("alert(\"", as.character(breaks), "\")")    },    labels = function(breaks) {      lapply(breaks, function(br) {        label_interactive(          as.character(br),          data_id = as.character(br),          onclick = paste0("alert(\"", as.character(br), "\")"),          tooltip = as.character(br)        )      })    }  )x <- girafe(ggobj = p5)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# add interactive continuous legend guide to a ggplot -------library(ggplot2)library(ggiraph)set.seed(4393)dsmall <- diamonds[sample(nrow(diamonds), 1000), ]p <- ggplot(dsmall, aes(x, y)) +  stat_density_2d(    aes(      fill = after_stat(nlevel),      tooltip = paste("nlevel:", after_stat(nlevel))    ),    geom = "interactive_polygon"  ) +  facet_grid(. ~ cut)# add interactive scale, by default the guide is a colourbarp1 <- p +  scale_fill_viridis_c_interactive(data_id = "nlevel", tooltip = "nlevel")x <- girafe(ggobj = p1)if (interactive()) {  print(x)}# make it legendp2 <- p +  scale_fill_viridis_c_interactive(    data_id = "nlevel",    tooltip = "nlevel",    guide = "legend"  )x <- girafe(ggobj = p2)if (interactive()) {  print(x)}# set the keys separatelyp3 <- p +  scale_fill_viridis_c_interactive(    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    guide = "legend"  )x <- girafe(ggobj = p3)if (interactive()) {  print(x)}# make the title and labels interactivep4 <- p +  scale_fill_viridis_c_interactive(    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    guide = "legend",    name = label_interactive("nlevel", data_id = "nlevel", tooltip = "nlevel"),    labels = function(breaks) {      label_interactive(        as.character(breaks),        data_id = as.character(breaks),        onclick = paste0("alert(\"", as.character(breaks), "\")"),        tooltip = as.character(breaks)      )    }  )x <- girafe(ggobj = p4)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}

Re-init animation defaults options

Description

Re-init all defaults options with the package defaults.

Usage

init_girafe_defaults()

See Also

Other girafe animation options:girafe_defaults(),girafe_options(),opts_hover(),opts_selection(),opts_sizing(),opts_toolbar(),opts_tooltip(),opts_zoom(),set_girafe_defaults()


Create interactive circles grob

Description

The grob is based oncircleGrob().See the documentation for that function for more details.

Usage

interactive_circle_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create interactive curve grob

Description

The grob is based oncurveGrob().See the documentation for that function for more details.

Usage

interactive_curve_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Interactive parameters

Description

Throughout ggiraph there are functions that add interactivity to ggplot plot elements.The user can control the various aspects of interactivity by supplyinga special set of parameters to these functions.

Arguments

tooltip

Tooltip text to associate with one or more elements.If this is supplied a tooltip is shown when the element is hovered.Plain text or html is supported.

To use html markup it is advised to usehtmltools::HTML() functionin order to mark the text as html markup.If the text is not marked as html and no opening/closing tags were detected,then any existing newline characters (⁠\r\n⁠,⁠\r⁠ and⁠\n⁠)are replaced with the⁠<br/>⁠ tag.

onclick

Javascript code to associate with one or more elements.This code will be executed when the element is clicked.

hover_css

Individual css style associate with one or more elements.This css style is applied when the element is hovered and overrides the default style,set viaopts_hover(),opts_hover_key() oropts_hover_theme().It can also be constructed withgirafe_css(),to give more control over the css for different element types (seeopts_hover() note).

selected_css

Individual css style associate with one or more elements.This css style is applied when the element is selected and overrides the default style,set viaopts_selection(),opts_selection_key() oropts_selection_theme().It can also be constructed withgirafe_css(),to give more control over the css for different element types (seeopts_selection() note).

data_id

Identifier to associate with one or more elements.This is mandatory parameter if hover and selection interactivity is desired.Identifiers are available as reactive input values in Shiny applications.

tooltip_fill

Color to use for tooltip background whenopts_tooltip()use_fill is TRUE.Useful for setting the tooltip background color ingeom_text_interactive() orgeom_label_interactive(), when the geom text color may be the same as the tooltip text color.

hover_nearest

Set to TRUE to apply the hover effect on the nearest elementwhile moving the mouse. In this case it is mandatory to also set thedata_id parameter

Details for interactive geom functions

The interactive parameters can be supplied with two ways:

Details for annotate_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

Details for element_*_interactive functions

The interactive parameters can be supplied as arguments in the relevant functionand they should be scalar values.

For theme text elements (element_text_interactive()), the interactive parameterscan also be supplied while setting a label value, via theggplot2::labs() familyof functions or when setting a scale/guide title or key label.Instead of setting a character value for the element, functionlabel_interactive() can be used to define interactive parametersto go along with the label.When the parameters are supplied that way, they override the default valuesthat are set at the theme viaelement_text_interactive() or via theguide'stheme parameters.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

Custom interactive parameters

The argumentextra_interactive_params can be passed to any of the *_interactive functions(geoms, grobs, scales, labeller, labels and theme elements),It should be a character vector of additional names to be treated as interactive parameterswhen evaluating the aesthetics.The values will eventually end up as attributes in the SVG elements of the output.

Intended only for expert use.

See Also

girafe_options(),girafe()


Create interactive path grob

Description

The grob is based onpathGrob().See the documentation for that function for more details.

Usage

interactive_path_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create interactive points grob

Description

The grob is based onpointsGrob().See the documentation for that function for more details.

Usage

interactive_points_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create interactive polygon grob

Description

The grob is based onpolygonGrob().See the documentation for that function for more details.

Usage

interactive_polygon_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create interactive polyline grob

Description

These grobs are based onpolylineGrob() andlinesGrob().See the documentation for those functions for more details.

Usage

interactive_polyline_grob(...)interactive_lines_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create interactive raster grob

Description

The grob is based onrasterGrob().See the documentation for that function for more details.

Usage

interactive_raster_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

interactive_parameters,girafe()


Create interactive rectangle grob

Description

The grob is based onrectGrob().See the documentation for that function for more details.

Usage

interactive_rect_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create interactive rectangle grob

Description

The grob is based onroundrectGrob().See the documentation for that function for more details.

Usage

interactive_roundrect_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create interactive segments grob

Description

The grob is based onsegmentsGrob.See the documentation for that function for more details.

Usage

interactive_segments_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create interactive text grob

Description

The grob is based ontextGrob.See the documentation for that function for more details.

Usage

interactive_text_grob(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive grob object.

Details for interactive_*_grob functions

The interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors depending on params on base function.

See Also

girafe()


Create an interactive label

Description

This function returns an object that can be used as a labelvia theggplot2::labs() family of functions orwhen setting ascale/guide name/title or key label.It passes the interactive parameters to a theme element created viaelement_text_interactive() or via an interactive guide.

Usage

label_interactive(label, ...)

Arguments

label

The text for the label (scalar character)

...

any of theinteractive_parameters.

Value

an interactive label object

See Also

interactive_parameters,labeller_interactive()

Examples

library(ggplot2)library(ggiraph)gg_jitter <- ggplot(  mpg, aes(cyl, hwy, group = cyl)) +  geom_boxplot() +  labs(title =         label_interactive(           "title",           data_id = "id_title",           onclick = "alert(\"title\")",           tooltip = "title" )  ) +  theme(plot.title = element_text_interactive())x <- girafe(ggobj = gg_jitter)if( interactive() ) print(x)

Construct interactive labelling specification for facet strips

Description

This function is a wrapper aroundggplot2::labeller() that allows the user to turnfacet strip labels into interactive labels vialabel_interactive().

It requires that theggplot2::theme()'sstrip.text elements are defined as interactivetheme elements viaelement_text_interactive(), see details.

Usage

labeller_interactive(.mapping = NULL, ...)

Arguments

.mapping

set of aesthetic mappings created byggplot2::aes() orggplot2::aes_().It should provide mappings for any of theinteractive_parameters.In addition it understands alabel parameter for creating a new label text.

...

arguments passed to base functionggplot2::labeller()

Details

The aesthetics set provided via.mapping is evaluated against the data providedby the ggplot2 facet. This means that the variables for each facet are availablefor using inside the aesthetic mappings. In addition the.label variable providesaccess to the produced label. See the examples.

The plot's theme is required to have the strip texts as interactive text elements.This involvesstrip.text or individuallystrip.text.x andstrip.text.y:theme(strip.text.x = element_text_interactive())theme(strip.text.y = element_text_interactive())

See Also

ggplot2::labeller(),label_interactive(),ggplot2::labellers

Examples

# use interactive labellerlibrary(ggplot2)library(ggiraph)p1 <- ggplot(mtcars, aes(x = mpg, y = wt)) +  geom_point_interactive(aes(tooltip = row.names(mtcars)))# Always remember to set the theme's strip texts as interactive# no need to set any interactive parameters, they'll be assigned from the labelsp1 <- p1 +  theme(    strip.text.x = element_text_interactive(),    strip.text.y = element_text_interactive()  )# simple facetp <- p1 +  facet_wrap_interactive(    vars(gear),    labeller = labeller_interactive(aes(tooltip = paste("Gear:", gear)))  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}# With two vars. When the .multi_line labeller argument is TRUE (default),# supply a different labeller for each varp <- p1 +  facet_wrap_interactive(    vars(gear, vs),    labeller = labeller_interactive(      gear = labeller_interactive(aes(tooltip = paste("Gear:", gear))),      vs = labeller_interactive(aes(tooltip = paste("VS:", vs)))    )  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}# When the .multi_line argument is FALSE, the labels are joined and# the same happens with the data, so we can refer to both variables in the aesthetics!p <- p1 +  facet_wrap_interactive(    vars(gear, vs),    labeller = labeller_interactive(      aes(tooltip = paste0("Gear: ", gear, "\nVS: ", vs)),      .multi_line = FALSE    )  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}# Example with facet_grid:p <- p1 +  facet_grid_interactive(    vs + am ~ gear,    labeller = labeller(      gear = labeller_interactive(aes(        tooltip = paste("gear:", gear),        data_id = paste0("gear_", gear)      )),      vs = labeller_interactive(aes(        tooltip = paste("VS:", vs),        data_id = paste0("vs_", vs)      )),      am = labeller_interactive(aes(        tooltip = paste("AM:", am),        data_id = paste0("am_", am)      ))    )  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}# Same with .rows and .cols and .multi_line = FALSEp <- p1 +  facet_grid_interactive(    vs + am ~ gear,    labeller = labeller(      .cols = labeller_interactive(        .mapping = aes(tooltip = paste("gear:", gear))      ),      .rows = labeller_interactive(        aes(tooltip = paste0("VS: ", vs, "\nAM: ", am)),        .multi_line = FALSE      )    )  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}# a more complex examplep2 <- ggplot(msleep, aes(x = sleep_total, y = awake)) +  geom_point_interactive(aes(tooltip = name)) +  theme(    strip.text.x = element_text_interactive(),    strip.text.y = element_text_interactive()  )# character vector as lookup tableconservation_status <- c(  cd = "Conservation Dependent",  en = "Endangered",  lc = "Least concern",  nt = "Near Threatened",  vu = "Vulnerable",  domesticated = "Domesticated")# function to capitalize a stringcapitalize <- function(x) {  substr(x, 1, 1) <- toupper(substr(x, 1, 1))  x}# function to cut a string and append an ellipsiscut_str <- function(x, width = 10) {  ind <- !is.na(x) & nchar(x) > width  x[ind] <- paste0(substr(x[ind], 1, width), "...")  x}replace_nas <- function(x) {  ifelse(is.na(x), "Not available", x)}# in this example we use the '.label' variable to access the produced label# and we set the 'label' aesthetic to modify the labelp <- p2 +  facet_grid_interactive(    vore ~ conservation,    labeller = labeller(      vore = labeller_interactive(        aes(tooltip = paste("Vore:", replace_nas(.label))),        .default = capitalize      ),      conservation = labeller_interactive(        aes(          tooltip = paste("Conservation:\n", replace_nas(.label)),          label = cut_str(.label, 3)        ),        .default = conservation_status      )    )  )x <- girafe(ggobj = p)if (interactive()) {  print(x)}

Find best family match with systemfonts

Description

match_family() returns the best font family match.

Usage

match_family(font = "sans", bold = TRUE, italic = TRUE, debug = NULL)

Arguments

font

family or face to match.

bold

Wheter to match a font featuring abold face.

italic

Wheter to match a font featuring anitalic face.

debug

deprecated

See Also

Other functions for font management:validated_fonts()

Examples

match_family("sans")match_family("serif")

Hover effect settings

Description

Allows customization of the renderingof graphic elements when the user hovers over them with the cursor (mouse pointer).Useopts_hover for interactive geometries in panels,opts_hover_key for interactive scales/guides andopts_hover_theme for interactive theme elements.Useopts_hover_inv for the effect on the rest of the geometries,while one is hovered (inverted operation).

Usage

opts_hover(css = NULL, reactive = FALSE, nearest_distance = NULL)opts_hover_inv(css = NULL)opts_hover_key(css = NULL, reactive = FALSE)opts_hover_theme(css = NULL, reactive = FALSE)

Arguments

css

css to associate with elements when they are hovered.It must be a scalar character. It can also be constructed withgirafe_css(), to give more control over the css for different element types.

reactive

if TRUE, in Shiny context, hovering will set Shiny input values.

nearest_distance

a scalar positive number defining the maximum distance to usewhen using thehover_nearestinteractive parameter feature.By default (NULL) it's set toInfinity which means that there is no distance limit.Setting it to 50, for example, it will hover the nearest element that hasat maximum 50 SVG units (pixels) distance from the mouse cursor.

Note

IMPORTANT: When applying afill style with thecss argument,be aware that the browser's CSS engine will apply it also to line elements,if there are any that use the hovering feature. This will cause an undesired effect.

To overcome this, supply the argumentcss usinggirafe_css(),in order to set thefill style only for the desired elements.

See Also

girafe_css(),girafe_css_bicolor()

Other girafe animation options:girafe_defaults(),girafe_options(),init_girafe_defaults(),opts_selection(),opts_sizing(),opts_toolbar(),opts_tooltip(),opts_zoom(),set_girafe_defaults()

Examples

library(ggplot2)dataset <- mtcarsdataset$carname = row.names(mtcars)gg <- ggplot(  data = dataset,  mapping = aes(x = wt, y = qsec, color = disp,                tooltip = carname, data_id = carname) ) +  geom_point_interactive() + theme_minimal()x <- girafe(ggobj = gg)x <- girafe_options(x,  opts_hover(css = "fill:wheat;stroke:orange;r:5pt;") )if( interactive() ) print(x)

Selection effect settings

Description

Allows customization of the rendering ofselected graphic elements.Useopts_selection for interactive geometries in panels,opts_selection_key for interactive scales/guides andopts_selection_theme for interactive theme elements.Useopts_selection_inv for the effect on the rest of the geometries,while some are selected (inverted operation).

Usage

opts_selection(  css = NULL,  type = c("multiple", "single", "none"),  only_shiny = TRUE,  selected = character(0))opts_selection_inv(css = NULL)opts_selection_key(  css = NULL,  type = c("single", "multiple", "none"),  only_shiny = TRUE,  selected = character(0))opts_selection_theme(  css = NULL,  type = c("single", "multiple", "none"),  only_shiny = TRUE,  selected = character(0))

Arguments

css

css to associate with elements when they are selected.It must be a scalar character. It can also be constructed withgirafe_css(), to give more control over the css for different element types.

type

selection mode ("single", "multiple", "none")when widget is in a Shiny application.

only_shiny

disable selections if not in a shiny context.

selected

character vector, id to be selected when the graph will beinitialized.

Note

IMPORTANT: When applying afill style with thecss argument,be aware that the browser's CSS engine will apply it also to line elements,if there are any that use the selection feature. This will cause an undesired effect.

To overcome this, supply the argumentcss usinggirafe_css(),in order to set thefill style only for the desired elements.

See Also

girafe_css(),girafe_css_bicolor()

Other girafe animation options:girafe_defaults(),girafe_options(),init_girafe_defaults(),opts_hover(),opts_sizing(),opts_toolbar(),opts_tooltip(),opts_zoom(),set_girafe_defaults()

Examples

library(ggplot2)dataset <- mtcarsdataset$carname = row.names(mtcars)gg <- ggplot(  data = dataset,  mapping = aes(x = wt, y = qsec, color = disp,                tooltip = carname, data_id = carname) ) +  geom_point_interactive() + theme_minimal()x <- girafe(ggobj = gg)x <- girafe_options(x,  opts_selection(type = "multiple", only_shiny = FALSE,    css = "fill:red;stroke:gray;r:5pt;") )if( interactive() ) print(x)

Girafe sizing settings

Description

Allows customization of the svg style sizing

Usage

opts_sizing(rescale = TRUE, width = 1)

Arguments

rescale

If FALSE, graphic will not be resized and the dimensions are exactlythose of the svg. If TRUE the graphic will be resize to fit its container

width

widget width ratio (0 < width <= 1).

See Also

Other girafe animation options:girafe_defaults(),girafe_options(),init_girafe_defaults(),opts_hover(),opts_selection(),opts_toolbar(),opts_tooltip(),opts_zoom(),set_girafe_defaults()

Examples

library(ggplot2)dataset <- mtcarsdataset$carname = row.names(mtcars)gg <- ggplot(  data = dataset,  mapping = aes(x = wt, y = qsec, color = disp,                tooltip = carname, data_id = carname) ) +  geom_point_interactive() + theme_minimal()x <- girafe(ggobj = gg)x <- girafe_options(x,  opts_sizing(rescale = FALSE) )if( interactive() ) print(x)

Toolbar settings

Description

Allows customization of the toolbar

Usage

opts_toolbar(  position = c("topright", "top", "bottom", "topleft", "bottomleft", "bottomright"),  saveaspng = TRUE,  pngname = "diagram",  tooltips = NULL,  hidden = NULL,  fixed = FALSE,  delay_mouseover = 200,  delay_mouseout = 500)

Arguments

position

Position of the toolbar relative to the plot.One of 'top', 'bottom', 'topleft', 'topright', 'bottomleft', 'bottomright'

saveaspng

Show (TRUE) or hide (FALSE) the 'download png' button.

pngname

The default basename (without .png extension) to use for the png file.

tooltips

A named list with tooltip labels for the buttons,for adapting to other language. Passing NULL will use the default tooltips:

list(lasso_select = 'lasso selection',lasso_deselect = 'lasso deselection',zoom_on = 'activate pan/zoom',zoom_off = 'deactivate pan/zoom',zoom_rect = 'zoom with rectangle',zoom_reset = 'reset pan/zoom',saveaspng = 'download png')

hidden

A character vector with the names of the buttons or button groups to be hiddenfrom the toolbar. This allows full customization of which buttons appear.

Valid button groups: 'selection', 'zoom', 'misc'

Valid button names: 'lasso_select', 'lasso_deselect', 'zoom_onoff', 'zoom_rect', 'zoom_reset', 'saveaspng'

fixed

if FALSE (default), the toolbar will float above the graphic, ifTRUE, the toolbar will be fixed and always visible.

delay_mouseover

The duration in milliseconds of thetransition associated with toolbar display.

delay_mouseout

The duration in milliseconds of thetransition associated with toolbar end of display.

Note

saveaspng relies on JavaScript promises, so any browsers that don't nativelysupport the standard Promise object will need to have a polyfill (e.g.Internet Explorer with version less than 11 will need it).

See Also

Other girafe animation options:girafe_defaults(),girafe_options(),init_girafe_defaults(),opts_hover(),opts_selection(),opts_sizing(),opts_tooltip(),opts_zoom(),set_girafe_defaults()

Examples

library(ggiraph)library(ggplot2)dataset <- mtcarsdataset$carname <- row.names(mtcars)gg <- ggplot(  data = dataset,  mapping = aes(    x = wt, y = qsec, color = disp,    tooltip = carname, data_id = carname  )) +  geom_point_interactive() +  theme_minimal()x <- girafe(  ggobj = gg,  options = list(    opts_zoom(max = 5),    opts_selection(only_shiny = FALSE),    opts_toolbar(position = "top")  ))if (interactive()) print(x)# Hide lasso selection tools (useful in Shiny when selections# are controlled by other app interactions)x <- girafe(  ggobj = gg,  options = list(    opts_zoom(max = 5),    opts_selection(only_shiny = FALSE),    opts_toolbar(      position = "top",      hidden = c("lasso_select", "lasso_deselect")    )  ))if (interactive()) print(x)# Keep only zoom/pan and reset, hide rectangular zoomx <- girafe(  ggobj = gg,  options = list(    opts_zoom(max = 5),    opts_selection(only_shiny = FALSE),    opts_toolbar(      position = "top",      hidden = c("selection", "zoom_rect", "saveaspng")    )  ))if (interactive()) print(x)

Tooltip settings

Description

Settings to be used withgirafe()for tooltip customisation.

Usage

opts_tooltip(  css = NULL,  offx = 10,  offy = 0,  use_cursor_pos = TRUE,  opacity = 0.9,  use_fill = FALSE,  use_stroke = FALSE,  delay_mouseover = 200,  delay_mouseout = 500,  placement = c("auto", "doc", "container"),  zindex = 999)

Arguments

css

extra css (added toposition: absolute;pointer-events: none;)used to customize tooltip area.

offx,offy

tooltip x and y offset

use_cursor_pos

should the cursor position be used toposition tooltip (in addition to offx and offy). Setting toTRUE will have no effect in the RStudio browser windows.

opacity

tooltip background opacity

use_fill,use_stroke

logical, use fill and stroke properties tocolor tooltip.

delay_mouseover

The duration in milliseconds of thetransition associated with tooltip display.

delay_mouseout

The duration in milliseconds of thetransition associated with tooltip end of display.

placement

Defines the container used for the tooltip element.It can be one of "auto" (default), "doc" or "container".

  • doc: the host document's body is used as tooltip container.The tooltip may cover areas outside of the svg graphic.

  • container: the svg container is used as tooltip container.In this case the tooltip content may wrap to fit inside the svg bounds.It will also inherit the CSS styles and transforms applied to the parent containers(like scaling in a slide presentation).

  • auto: This is the default, ggiraph choses the best option accordingto use cases. Usually it redirects to "doc", however in axaringan context,it redirects to "container".

zindex

tooltip css z-index, default to 999.

See Also

Other girafe animation options:girafe_defaults(),girafe_options(),init_girafe_defaults(),opts_hover(),opts_selection(),opts_sizing(),opts_toolbar(),opts_zoom(),set_girafe_defaults()

Examples

library(ggplot2)dataset <- mtcarsdataset$carname = row.names(mtcars)gg <- ggplot(  data = dataset,  mapping = aes(x = wt, y = qsec, color = disp,                tooltip = carname, data_id = carname) ) +  geom_point_interactive() + theme_minimal()x <- girafe(ggobj = gg)x <- girafe_options(x,  opts_tooltip(opacity = .7,    offx = 20, offy = -10,    use_fill = TRUE, use_stroke = TRUE,    delay_mouseout = 1000) )if( interactive() ) print(x)

Zoom settings

Description

Allows customization of the zoom.

Usage

opts_zoom(min = 1, max = 1, duration = 300, default_on = FALSE)

Arguments

min

minimum zoom factor

max

maximum zoom factor

duration

duration of the zoom transitions, in milliseconds

default_on

if TRUE, pan/zoom will be activated by default when the plot is rendered

See Also

Other girafe animation options:girafe_defaults(),girafe_options(),init_girafe_defaults(),opts_hover(),opts_selection(),opts_sizing(),opts_toolbar(),opts_tooltip(),set_girafe_defaults()

Examples

library(ggplot2)dataset <- mtcarsdataset$carname = row.names(mtcars)gg <- ggplot(  data = dataset,  mapping = aes(x = wt, y = qsec, color = disp,                tooltip = carname, data_id = carname) ) +  geom_point_interactive() + theme_minimal()x <- girafe(ggobj = gg)x <- girafe_options(x,  opts_zoom(min = .7, max = 2, default_on = TRUE) )if( interactive() ) print(x)

Reactive version of girafe

Description

Makes a reactive version of girafeobject for use in Shiny.

Usage

renderGirafe(expr, env = parent.frame(), quoted = FALSE, outputArgs = list())

Arguments

expr

An expression that returns agirafe() object.

env

The environment in which to evaluate expr.

quoted

Isexpr a quoted expression

outputArgs

A list of arguments to be passed through to the implicit call togirafeOutput()whenrenderGirafe is used in an interactive R Markdown document.


Reactive version of ggiraph object

Description

Makes a reactive version of a ggiraph object for use in Shiny.

This function is now defunct, users shouldnow use functionrenderGirafe().

Usage

renderggiraph(...)

Arguments

...

unused


Run shiny examples and see corresponding code

Description

Run shiny examples and see corresponding code

Usage

run_girafe_example(name = "crimes")

Arguments

name

an application name, one ofcars, click_scale, crimes, DT, dynamic_ui,iris, maps and modal.


Create interactive scales for alpha transparency

Description

These scales are based onggplot2::scale_alpha(),ggplot2::scale_alpha_continuous(),ggplot2::scale_alpha_discrete(),ggplot2::scale_alpha_binned(),ggplot2::scale_alpha_ordinal(),ggplot2::scale_alpha_date(),ggplot2::scale_alpha_datetime().See the documentation for those functions for more details.

Usage

scale_alpha_interactive(...)scale_alpha_continuous_interactive(...)scale_alpha_discrete_interactive(...)scale_alpha_binned_interactive(...)scale_alpha_ordinal_interactive(...)scale_alpha_date_interactive(...)scale_alpha_datetime_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_colour_brewer_interactive(),scale_colour_interactive,scale_colour_steps_interactive(),scale_gradient_interactive,scale_linetype_interactive(),scale_manual_interactive,scale_shape_interactive(),scale_size_interactive(),scale_viridis_interactive


Create interactive colorbrewer scales

Description

These scales are based onggplot2::scale_colour_brewer(),ggplot2::scale_fill_brewer(),ggplot2::scale_colour_distiller(),ggplot2::scale_fill_distiller(),ggplot2::scale_colour_fermenter(),ggplot2::scale_fill_fermenter().See the documentation for those functions for more details.

Usage

scale_colour_brewer_interactive(...)scale_color_brewer_interactive(...)scale_fill_brewer_interactive(...)scale_colour_distiller_interactive(...)scale_color_distiller_interactive(...)scale_fill_distiller_interactive(...)scale_colour_fermenter_interactive(...)scale_color_fermenter_interactive(...)scale_fill_fermenter_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_interactive,scale_colour_steps_interactive(),scale_gradient_interactive,scale_linetype_interactive(),scale_manual_interactive,scale_shape_interactive(),scale_size_interactive(),scale_viridis_interactive


Create interactive colour scales

Description

These scales are based onggplot2::scale_colour_continuous(),ggplot2::scale_fill_continuous(),ggplot2::scale_colour_grey(),ggplot2::scale_fill_grey(),ggplot2::scale_colour_hue(),ggplot2::scale_fill_hue(),ggplot2::scale_colour_binned(),ggplot2::scale_fill_binned(),ggplot2::scale_colour_discrete(),ggplot2::scale_fill_discrete(),ggplot2::scale_colour_date(),ggplot2::scale_fill_date(),ggplot2::scale_colour_datetime() andggplot2::scale_fill_datetime().See the documentation for those functions for more details.

Usage

scale_colour_continuous_interactive(...)scale_color_continuous_interactive(...)scale_fill_continuous_interactive(...)scale_colour_grey_interactive(...)scale_color_grey_interactive(...)scale_fill_grey_interactive(...)scale_colour_hue_interactive(...)scale_color_hue_interactive(...)scale_fill_hue_interactive(...)scale_colour_binned_interactive(...)scale_color_binned_interactive(...)scale_fill_binned_interactive(...)scale_colour_discrete_interactive(...)scale_color_discrete_interactive(...)scale_fill_discrete_interactive(...)scale_colour_date_interactive(...)scale_color_date_interactive(...)scale_fill_date_interactive(...)scale_colour_datetime_interactive(...)scale_color_datetime_interactive(...)scale_fill_datetime_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_brewer_interactive(),scale_colour_steps_interactive(),scale_gradient_interactive,scale_linetype_interactive(),scale_manual_interactive,scale_shape_interactive(),scale_size_interactive(),scale_viridis_interactive


Create interactive binned gradient colour scales

Description

These scales are based onggplot2::scale_colour_steps(),ggplot2::scale_fill_steps(),ggplot2::scale_colour_steps2(),ggplot2::scale_fill_steps2(),ggplot2::scale_colour_stepsn() andggplot2::scale_fill_stepsn().See the documentation for those functions for more details.

Usage

scale_colour_steps_interactive(...)scale_color_steps_interactive(...)scale_fill_steps_interactive(...)scale_colour_steps2_interactive(...)scale_color_steps2_interactive(...)scale_fill_steps2_interactive(...)scale_colour_stepsn_interactive(...)scale_color_stepsn_interactive(...)scale_fill_stepsn_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_brewer_interactive(),scale_colour_interactive,scale_gradient_interactive,scale_linetype_interactive(),scale_manual_interactive,scale_shape_interactive(),scale_size_interactive(),scale_viridis_interactive


Create interactive gradient colour scales

Description

These scales are based onggplot2::scale_colour_gradient(),ggplot2::scale_fill_gradient(),ggplot2::scale_colour_gradient2(),ggplot2::scale_fill_gradient2(),ggplot2::scale_colour_gradientn() andggplot2::scale_fill_gradientn().See the documentation for those functions for more details.

Usage

scale_colour_gradient_interactive(...)scale_color_gradient_interactive(...)scale_fill_gradient_interactive(...)scale_colour_gradient2_interactive(...)scale_color_gradient2_interactive(...)scale_fill_gradient2_interactive(...)scale_colour_gradientn_interactive(...)scale_color_gradientn_interactive(...)scale_fill_gradientn_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_brewer_interactive(),scale_colour_interactive,scale_colour_steps_interactive(),scale_linetype_interactive(),scale_manual_interactive,scale_shape_interactive(),scale_size_interactive(),scale_viridis_interactive

Examples

# add interactive gradient colour scale to a ggplot -------library(ggplot2)library(ggiraph)df <- expand.grid(x = 0:5, y = 0:5)df$z <- runif(nrow(df))p <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +  geom_raster_interactive()# add an interactive scale (guide is colourbar)p1 <- p +  scale_fill_gradient_interactive(    data_id = "colourbar",    onclick = "alert(\"colourbar\")",    tooltip = "colourbar"  )x <- girafe(ggobj = p1)if (interactive()) {  print(x)}# make the legend title interactivep2 <- p +  scale_fill_gradient_interactive(    data_id = "colourbar",    onclick = "alert(\"colourbar\")",    tooltip = "colourbar",    name = label_interactive(      "z",      data_id = "colourbar",      onclick = "alert(\"colourbar\")",      tooltip = "colourbar"    )  )x <- girafe(ggobj = p2)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# make the legend labels interactivep3 <- p +  scale_fill_gradient_interactive(    data_id = "colourbar",    onclick = "alert(\"colourbar\")",    tooltip = "colourbar",    name = label_interactive(      "z",      data_id = "colourbar",      onclick = "alert(\"colourbar\")",      tooltip = "colourbar"    ),    labels = function(breaks) {      lapply(breaks, function(abreak) {        label_interactive(          as.character(abreak),          data_id = paste0("colourbar", abreak),          onclick = "alert(\"colourbar\")",          tooltip = paste0("colourbar", abreak)        )      })    }  )x <- girafe(ggobj = p3)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# also via the guidep4 <- p +  scale_fill_gradient_interactive(    data_id = "colourbar",    onclick = "alert(\"colourbar\")",    tooltip = "colourbar",    guide = guide_colourbar_interactive(      title.theme = element_text_interactive(        size = 8,        data_id = "colourbar",        onclick = "alert(\"colourbar\")",        tooltip = "colourbar"      ),      label.theme = element_text_interactive(        size = 8,        data_id = "colourbar",        onclick = "alert(\"colourbar\")",        tooltip = "colourbar"      )    )  )x <- girafe(ggobj = p4)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# make the legend background interactivep5 <- p4 +  theme(    legend.background = element_rect_interactive(      data_id = "colourbar",      onclick = "alert(\"colourbar\")",      tooltip = "colourbar"    )  )x <- girafe(ggobj = p5)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}

Create interactive scales for line patterns

Description

These scales are based onggplot2::scale_linetype(),ggplot2::scale_linetype_continuous(),ggplot2::scale_linetype_discrete() andggplot2::scale_linetype_binned().See the documentation for those functions for more details.

Usage

scale_linetype_interactive(...)scale_linetype_continuous_interactive(...)scale_linetype_discrete_interactive(...)scale_linetype_binned_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_brewer_interactive(),scale_colour_interactive,scale_colour_steps_interactive(),scale_gradient_interactive,scale_manual_interactive,scale_shape_interactive(),scale_size_interactive(),scale_viridis_interactive


Create your own interactive discrete scale

Description

These scales are based onggplot2::scale_colour_manual(),ggplot2::scale_fill_manual(),ggplot2::scale_size_manual(),ggplot2::scale_shape_manual(),ggplot2::scale_linetype_manual(),ggplot2::scale_alpha_manual() andggplot2::scale_discrete_manual().See the documentation for those functions for more details.

Usage

scale_colour_manual_interactive(...)scale_color_manual_interactive(...)scale_fill_manual_interactive(...)scale_size_manual_interactive(...)scale_shape_manual_interactive(...)scale_linetype_manual_interactive(...)scale_alpha_manual_interactive(...)scale_discrete_manual_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_brewer_interactive(),scale_colour_interactive,scale_colour_steps_interactive(),scale_gradient_interactive,scale_linetype_interactive(),scale_shape_interactive(),scale_size_interactive(),scale_viridis_interactive

Examples

# add interactive manual fill scale to a ggplot -------library(ggplot2)library(ggiraph)dat <- data.frame(  name = c("Guy", "Ginette", "David", "Cedric", "Frederic"),  gender = c("Male", "Female", "Male", "Male", "Male"),  height = c(169, 160, 171, 172, 171))p <- ggplot(dat, aes(x = name, y = height, fill = gender, data_id = name)) +  geom_bar_interactive(stat = "identity")# add interactive scale (guide is legend)p1 <- p +  scale_fill_manual_interactive(    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = c(Female = "Female", Male = "Male"),    tooltip = c(Male = "Male", Female = "Female")  )x <- girafe(ggobj = p1)if (interactive()) {  print(x)}# make the title interactive toop2 <- p +  scale_fill_manual_interactive(    name = label_interactive(      "gender",      tooltip = "Gender levels",      data_id = "legend.title"    ),    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = c(Female = "Female", Male = "Male"),    tooltip = c(Male = "Male", Female = "Female")  )x <- girafe(ggobj = p2)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# the interactive params can be functions toop3 <- p +  scale_fill_manual_interactive(    name = label_interactive(      "gender",      tooltip = "Gender levels",      data_id = "legend.title"    ),    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    onclick = function(breaks) {      paste0("alert(\"", as.character(breaks), "\")")    }  )x <- girafe(ggobj = p3)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# also via the guidep4 <- p +  scale_fill_manual_interactive(    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    onclick = function(breaks) {      paste0("alert(\"", as.character(breaks), "\")")    },    guide = guide_legend_interactive(      title.theme = element_text_interactive(        size = 8,        data_id = "legend.title",        onclick = "alert(\"Gender levels\")",        tooltip = "Gender levels"      ),      label.theme = element_text_interactive(        size = 8      )    )  )x <- girafe(ggobj = p4)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}# make the legend labels interactivep5 <- p +  scale_fill_manual_interactive(    name = label_interactive(      "gender",      tooltip = "Gender levels",      data_id = "legend.title"    ),    values = c(Male = "#0072B2", Female = "#009E73"),    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    onclick = function(breaks) {      paste0("alert(\"", as.character(breaks), "\")")    },    labels = function(breaks) {      lapply(breaks, function(br) {        label_interactive(          as.character(br),          data_id = as.character(br),          onclick = paste0("alert(\"", as.character(br), "\")"),          tooltip = as.character(br)        )      })    }  )x <- girafe(ggobj = p5)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}

Create interactive scales for shapes

Description

These scales are based onggplot2::scale_shape(),ggplot2::scale_shape_continuous(),ggplot2::scale_shape_discrete(),ggplot2::scale_shape_binned() andggplot2::scale_shape_ordinal().See the documentation for those functions for more details.

Usage

scale_shape_interactive(...)scale_shape_continuous_interactive(...)scale_shape_discrete_interactive(...)scale_shape_binned_interactive(...)scale_shape_ordinal_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_brewer_interactive(),scale_colour_interactive,scale_colour_steps_interactive(),scale_gradient_interactive,scale_linetype_interactive(),scale_manual_interactive,scale_size_interactive(),scale_viridis_interactive


Create interactive scales for area or radius

Description

These scales are based onggplot2::scale_size(),ggplot2::scale_size_area(),ggplot2::scale_size_continuous(),ggplot2::scale_size_discrete(),ggplot2::scale_size_binned(),ggplot2::scale_size_binned_area(),ggplot2::scale_size_date(),ggplot2::scale_size_datetime(),ggplot2::scale_size_ordinal() andggplot2::scale_radius().See the documentation for those functions for more details.

Usage

scale_size_interactive(...)scale_size_area_interactive(...)scale_size_continuous_interactive(...)scale_size_discrete_interactive(...)scale_size_binned_interactive(...)scale_size_binned_area_interactive(...)scale_size_date_interactive(...)scale_size_datetime_interactive(...)scale_size_ordinal_interactive(...)scale_radius_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_brewer_interactive(),scale_colour_interactive,scale_colour_steps_interactive(),scale_gradient_interactive,scale_linetype_interactive(),scale_manual_interactive,scale_shape_interactive(),scale_viridis_interactive


Create interactive viridis colour scales

Description

These scales are based onggplot2::scale_colour_viridis_d(),ggplot2::scale_fill_viridis_d(),ggplot2::scale_colour_viridis_c(),ggplot2::scale_fill_viridis_c(),ggplot2::scale_colour_viridis_b(),ggplot2::scale_fill_viridis_b(),ggplot2::scale_colour_ordinal(),ggplot2::scale_fill_ordinal().See the documentation for those functions for more details.

Usage

scale_colour_viridis_d_interactive(...)scale_color_viridis_d_interactive(...)scale_fill_viridis_d_interactive(...)scale_colour_viridis_c_interactive(...)scale_color_viridis_c_interactive(...)scale_fill_viridis_c_interactive(...)scale_colour_viridis_b_interactive(...)scale_color_viridis_b_interactive(...)scale_fill_viridis_b_interactive(...)scale_colour_ordinal_interactive(...)scale_color_ordinal_interactive(...)scale_fill_ordinal_interactive(...)

Arguments

...

arguments passed to base function,plus any of theinteractive_parameters.

Value

An interactive scale object.

Details for interactive scale and interactive guide functions

For scales, the interactive parameters can be supplied as arguments in the relevant functionand they can be scalar values or vectors, depending on the number of breaks (levels) andthe type of the guide used.The guides do not accept any interactive parameter directly, they receive them from the scales.

When guide of typelegend,bins,colourbar orcoloursteps is used,it will be converted to aguide_legend_interactive(),guide_bins_interactive(),guide_colourbar_interactive() orguide_coloursteps_interactive() respectively,if it's not already.

The length of each scale interactive parameter vector should match the length of the breaks.It can also be a named vector, where each name should correspond to the same break name.It can also be defined as function that takes the breaks as input and returns a named orunnamed vector of values as output.

For binned guides likebins andcoloursteps the breaks include the label breaks and the limits.The number of bins will be one less than the number of breaks and the interactive parameters can beconstructed for each bin separately (look at the examples).Forcolourbar guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactiveparameters should be scalar too. Forcolourbar guide in non-raster mode, the bar is drawn usingrectangles, and the breaks are the midpoints of each rectangle.

The interactive parameters here, give interactivity only to the key elements of the guide.

To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),the relevant theme elements or relevant guide arguments can be used.Theguide argumentstitle.theme andlabel.theme can be defined aselement_text_interactive (in fact, they will be converted to that if they are notalready), either directly or via the theme.See the element_*_interactive section for more details.

See Also

girafe()

Other interactive scale:scale_alpha_interactive(),scale_colour_brewer_interactive(),scale_colour_interactive,scale_colour_steps_interactive(),scale_gradient_interactive,scale_linetype_interactive(),scale_manual_interactive,scale_shape_interactive(),scale_size_interactive()

Examples

# add interactive viridis scale to a ggplot -------library(ggplot2)library(ggiraph)set.seed(4393)dsmall <- diamonds[sample(nrow(diamonds), 1000), ]p <- ggplot(dsmall, aes(x, y)) +  stat_density_2d(    aes(      fill = after_stat(nlevel),      tooltip = paste("nlevel:", after_stat(nlevel))    ),    geom = "interactive_polygon"  ) +  facet_grid(. ~ cut)# add interactive scale, by default the guide is a colourbarp1 <- p +  scale_fill_viridis_c_interactive(data_id = "nlevel", tooltip = "nlevel")x <- girafe(ggobj = p1)if (interactive()) {  print(x)}# make it legendp2 <- p +  scale_fill_viridis_c_interactive(    data_id = "nlevel",    tooltip = "nlevel",    guide = "legend"  )x <- girafe(ggobj = p2)if (interactive()) {  print(x)}# set the keys separatelyp3 <- p +  scale_fill_viridis_c_interactive(    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    guide = "legend"  )x <- girafe(ggobj = p3)if (interactive()) {  print(x)}# make the title and labels interactivep4 <- p +  scale_fill_viridis_c_interactive(    data_id = function(breaks) {      as.character(breaks)    },    tooltip = function(breaks) {      as.character(breaks)    },    guide = "legend",    name = label_interactive("nlevel", data_id = "nlevel", tooltip = "nlevel"),    labels = function(breaks) {      label_interactive(        as.character(breaks),        data_id = as.character(breaks),        onclick = paste0("alert(\"", as.character(breaks), "\")"),        tooltip = as.character(breaks)      )    }  )x <- girafe(ggobj = p4)x <- girafe_options(  x,  opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red")))if (interactive()) {  print(x)}

Modify defaults girafe animation options

Description

girafe animation options (seegirafe_defaults())are automatically applied to every girafe you produce.Useset_girafe_defaults() to override them. Useinit_girafe_defaults()to re-init all values with the package defaults.

Usage

set_girafe_defaults(  fonts = NULL,  opts_sizing = NULL,  opts_tooltip = NULL,  opts_hover = NULL,  opts_hover_key = NULL,  opts_hover_inv = NULL,  opts_hover_theme = NULL,  opts_selection = NULL,  opts_selection_inv = NULL,  opts_selection_key = NULL,  opts_selection_theme = NULL,  opts_zoom = NULL,  opts_toolbar = NULL)

Arguments

fonts

default values forfonts, see argumentfontsofdsvg() function.

opts_sizing

default values foropts_sizing() usedin argumentoptions ofgirafe() function.

opts_tooltip

default values foropts_tooltip() usedin argumentoptions ofgirafe() function.

opts_hover

default values foropts_hover() used in argumentoptions ofgirafe() function.

opts_hover_key

default values foropts_hover_key() used in argumentoptions ofgirafe() function.

opts_hover_inv

default values foropts_hover_inv() used in argumentoptions ofgirafe() function.

opts_hover_theme

default values foropts_hover_theme() used in argumentoptions ofgirafe() function.

opts_selection

default values foropts_selection() used in argumentoptions ofgirafe() function.

opts_selection_inv

default values foropts_selection_inv() used in argumentoptions ofgirafe() function.

opts_selection_key

default values foropts_selection_key() used in argumentoptions ofgirafe() function.

opts_selection_theme

default values foropts_selection_theme() used in argumentoptions ofgirafe() function.

opts_zoom

default values foropts_zoom() used in argumentoptions ofgirafe() function.

opts_toolbar

default values foropts_toolbar() used in argumentoptions ofgirafe() function.

See Also

Other girafe animation options:girafe_defaults(),girafe_options(),init_girafe_defaults(),opts_hover(),opts_selection(),opts_sizing(),opts_toolbar(),opts_tooltip(),opts_zoom()

Examples

library(ggplot2)set_girafe_defaults(  opts_hover = opts_hover(css = "r:10px;"),  opts_hover_inv = opts_hover_inv(),  opts_sizing = opts_sizing(rescale = FALSE, width = .8),  opts_tooltip = opts_tooltip(opacity = .7,                              offx = 20, offy = -10,                              use_fill = TRUE, use_stroke = TRUE,                              delay_mouseout = 1000),  opts_toolbar = opts_toolbar(position = "top", saveaspng = FALSE),  opts_zoom = opts_zoom(min = .8, max = 7))init_girafe_defaults()

List of validated default fonts

Description

Validates and possibly modifies the fonts to be used as defaultvalue in a graphic according to the fonts available on the machine. It processelements named "sans", "serif", "mono" and "symbol".

Usage

validated_fonts(fonts = list())

Arguments

fonts

Named list of font names to be aliased withfonts installed on your system. If unspecified, the R defaultfamilies "sans", "serif", "mono" and "symbol"are aliased to the family returned bymatch_family().

If fonts are available, the default mapping will use these values:

R family Font on Windows Font on Unix Font on Mac OS
sans Arial DejaVu Sans Helvetica
serif Times New Roman DejaVu serif Times
mono Courier DejaVu mono Courier
symbol Symbol DejaVu Sans Symbol

Value

a named list of validated font family names

See Also

girafe(),dsvg()

Other functions for font management:match_family()

Examples

validated_fonts()

[8]ページ先頭

©2009-2025 Movatter.jp